
VIRUS BULLETIN www.virusbtn.com

1JULY 2015

Covering the
global threat landscape

DRIDEX IN THE WILD
Meng Su
Tencent, China

Dridex is a descendent of the Cridex malware. Its initial
spread occurred in late 2014 via spam and the malware
is still active in the wild today. Dridex is a Windows
executable which uploads system information to its C&C
server before downloading a DLL. After the DLL has been
installed by the executable, the C&C server will control
the infected PC, sending it commands to carry out further
harmful instructions. In this article, we will analyse the main
executable, focusing on the following actions: obtaining
APIs, getting server data, getting and encoding system
information, and communicating with the C&C server.

OBTAINING APIs
All of the Windows APIs the bot uses are obtained by a
function. The argument passed into this function is only an
index. This ‘index’ is an index number of the API_Address
array – the API-name-encode-data-block uses the same index
value.

At fi rst, the malware checks the API_Address array, which
is initiated with a NULL value. If API_Address[API_index]
is found with a valid value, the function returns the address.
Otherwise the malware moves onto the next step.

In the second step, the malware decodes the API_Name from
the API-name-encode-data-block with the API_index using
an algorithm which is predefi ned by the malware itself. The
decoded data contains two parts, DLL_index and API_Name:

API_Data

{

BYTE DLL_index;

BYTE[] API_Name;

};

The role of DLL_index is the same as that of the API_index.
The malware has a DLL_Module array which is similar to
the API_Address array and also a similar DLL-name-encode-
data-block.

The malware checks the DLL_Module array. If it fi nds valid
data at DLL_Module[DLL_index], then it returns the DLL
module for the next step. Otherwise the malware will get
the DLL module using the following method: similar to
API_Name, the DLL_Name is decoded from the DLL-name-

Figure 1: Obtaining APIs.

VIRUS BULLETIN www.virusbtn.com

JULY 20152

encode-data-block by DLL_index. After that, the malware
checks whether the DLL_index value is equal to one. By
the design of the malware, the DLL_index of kernel32.dll
is one. The way to get this DLL’s module is using register
fs:[0x30], which points to the PEB structure, and then fi nding
the PEB_LDR_DATA structure via the PEB. In the PEB_
LDR_DATA structure we can fi nd out the DLL base address
by comparing the DLL name. If the DLL_index value is
not one, the malware will get the LoadLibrary API whose
API_index value is one. The malware then uses this API to
get the DLL module. The malware records the DLL module
into the DLL_Module array, regardless of whether or not the
DLL_index is 1.

If the API_index passed is 2, which represents the
GetProcAddress API in this malware, the bot will traverse
the DLL’s export table to get the API address. Otherwise the
malware will get the GetProcAddress API fi rst and then call
this API to get the other API’s address. The API address will
be saved into the API_Address array.

Note that the addresses of the LoadLibrary and
GetProcAddress APIs are always the fi rst two addresses
obtained by the malware. The fl owchart in Figure 1 shows the
full logic steps of getting any single API address.

GETTING SERVER DATA

In this malware, the C&C server address is not stored as plain
text. The malware uses the GetModuleHandleW API to locate
the IMAGE_DOS_HEADER, and then locates the section
header. It will fi nd one section’s virtual address whose section
name is ‘.sdata’ (Figure 2).

This section contains only 0x7A valid bytes. The fi rst
DWORD (0xA9E97561 in this case) is a key which is used to
XOR the other 0x76 bytes. Figure 3 shows the content after it
has been XOR’ed.

As shown in Figure 3, this data is still encrypted. The 0x76
byte-long decoded data consists of three parts: the size of the

Figure 2: .sdata section content.

Figure 3: XOR content.

Figure 4: The raw data.

 VIRUS BULLETIN www.virusbtn.com

JULY 2015 3

encoded data (0x6E), the size of the raw data (0x99), and the
encoded data:

Encoded_Server_Data

{

DWORD szEncodeData;

DWORD szRawData;

BYTE[] EncodedData;

};

The ‘EncodedData’ is compressed by the aPLib algorithm
[1]. The decompressed raw data is shown in Figure 4.

The fi rst four bytes of this raw data indicate the length of the
data behind it. Figure 5 shows the confi guration of the server.
The ‘botnet’ attribute shows the botnet_id; the ‘server_list’
tag shows the server URLs.

Figure 5: Server data.

After getting the server URL, the malware will collect system
information for further communication.

GETTING AND ENCODING SYSTEM
INFORMATION
The collected information will be stored in XML format in
two parts. The fi rst part is composed as follows:

<loader><get_module unique="%s" botnet="%d"
system="%dv" name="bot" bit="%d"/>

Meanwhile, the format of the other part is:

<soft><![CDATA[%s]]></soft></loader>.

In the fi rst part, the value of the ‘unique’ attribute records a
string relating to three registry entries:

Key: HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/
Control/ComputerName/ComputerName

Name: ComputerName

Key: HKEY_LOCAL_MACHINE/Volatile Environment

Name: USERNAME

Key: HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows
NT/CurrentVersion

Name: InstallDate

The malware retrieves the values of these three keys and
combines them as a data block, System_Info, then calculates
the MD5 of this data block. The malware also checks every
character of the ‘ComputerName’ value. If a character is
not found on a list which contains the Latin letters and
some special symbols, it will be replaced with the character
‘?’. I think the malware author made a mistake here: there
is no letter ‘D’ on the letter list and there is an extra ‘S’
– I guess that’s because ‘D’ is pretty close to ‘S’ on the
keyboard and this was probably a typo. This means that the
malware will replace ‘D’ with ‘?’. In the end, the changed
‘ComputerName’ value and the MD5 of the System_Info
are joined with the character ‘_’ (Figure 6), then set with the
‘unique’ attribute.

The value of the ‘botnet’ argument is a botnet_id which is the
same botnet_id as in the server confi guration (Figure 5). The
value of the ‘system’ attribute is a hash value which indicates
the version of the operating system (e.g. XP or Win7),
whether it is an NT kernel or not, whether or not it is running
as administrator, and whether or not the UAC is enabled. The
value of the ‘bit’ attribute indicates whether the operating
system is 32-bit (32) or 64-bit (64).

In the second part, the content in ‘CDATA’ is the information
about the installed software. The malware enumerates all
the subkeys of HKEY_LOCAL_MACHINE/SOFTWARE/
Microsoft/Windows/CurrentVersion/Uninstall and
gets the value of their key name, ‘DisplayName’ and
‘DisplayVersion’. It will compose a string with the format
‘DisplayName_value (DisplayVersion_value)’ and connects
every subkey’s string with the character ‘;’. It should be noted
that the malware only recognizes English characters, so it
changes the non-English characters to ‘?’.

The malware attaches a string, ‘Starting path: %d’, to the
end of the connected string. Despite what its name may
suggest, the content of ‘Starting path’ is not a real path of
the malware. Instead, it is a fi gure indicated in the MIC
(Mandatory Integrity Control [2]) level of the path which
the malware located. There are seven levels: untrusted, low,
medium, medium plus, high, system and protect process,
which correspond to the values 1–7. If the operating system
version is higher than or equal to Windows NT 6.0, the
malware uses the GetSidSubAuthority API to get the MIC
level. Otherwise, it sets the fi gure to 5. Figure 7 shows the
raw data which will be sent to the server.

Figure 6: The content of the ‘unique’ argument.

VIRUS BULLETIN www.virusbtn.com

JULY 20154

Finally, the malware gets a random DWORD key and uses a
XOR operation to encode the raw data of every DWORD.

COMMUNICATION

Before the communication begins, the malware will parse
the server data (Figure 5). The parsing function checks the
special characters (e.g. ‘://’, ‘@’, ‘/’, ‘:’, ‘?’, ‘#’) to locate the
communication protocol, server address, fi le path, arguments,
port, user name and password. If the hard-coded URL does
not have a communication protocol, the malware will set
‘HTTP’ as default. The port fi eld also has default values:
for HTTP it is 80, for HTTPS it is 443 and for FTP it is 21.
Other fi elds default to NULL if no matching value is found
in the string. In this sample, the server data is very simple,
with only server address and port. As shown in Figure 5,
the server URL is of the format 194.28.87.125:4443. By
design, the malware uses HTTPS for communication, so
before calling the parsing function, the malware will prepend
the URL string with the HTTPS protocol. After calling the

Figure 7: The raw data sent to the server.

parsing function, the malware will get the server address
as 194.28.87.125 and the port as 4443. After parsing, the
malware uses the InternetConnectW API to connect to the
server, sends the encrypted data using the HttpSendRequestW
API, and fi nally reads the response from the server using the
InternetReadFile API.

The data received from the server is also encrypted. The fi rst
four bytes is a DWORD key which is used as the XOR key to
decode the data after it by DWORD (Figure 8).

The decoded data is encased in XML code which starts with
a ‘<root></root>’ element. In the root node, there are two
sub nodes, <nodes></nodes> and <module name="bot"
bit="32"></module>. The content in the ‘module’ node is
encoded with the BASE64 algorithm. Figure 9 shows a piece
of the data after decoding.

The fi rst 0x80 bytes of the decoded data is junk code, after
which is a DLL. The malware writes this DLL into a TEMP
fi le whose directory is the same as the malware. Then it
creates a registry entry: HKEY_CURRENT_USER/Software/

 VIRUS BULLETIN www.virusbtn.com

JULY 2015

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Developer: Lian Sebe

Consultant Technical Editor: Dr Morton Swimmer

© 2015 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. Fax: +44 (0)1865 543153
Email: editorial@virusbtn.com
Web: http://www.virusbtn.com/

5

Microsoft/Windows/CurrentVersion/Explorer/CLSID/%s/
ShellFolder. The ‘%s’ is a GUID which is transformed
from the MD5 of a variant of the System_Info data block
(described earlier). The System_Info variant only adds a byte,
0x13, following the System_Info block. The value of this
registry is encrypted by a customized algorithm. Its raw data
is in the format <cfg net="%d" build="0"><startup>%s</
startup>%S</cfg>. The value of the ‘net’
attribute is botnet_id, the content in the ‘startup’ section is
retrieved from the ‘nodes’ section, which is sent from the
C&C server, the content of the ‘del’ section is the path of the
malware. Finally, the malware calls the CreateProcessW API
to run the DLL with argument ‘rundll32.exe "<DLL_path>"
Notifi erInit’. The DLL has an export function, Notifi erInit, and
this DLL will carry out further orders received from the server.

CONCLUSION

By analysing the malware in detail, we have learned about
its working mechanism and how it gathers information and
communicates with the C&C server. We can now forge data
and send it to the server, decode the response and check
the server commands. In this way, we might obtain more

Figure 8: XOR the downloaded data.

Figure 9: A piece of data decoded with BASE64.

commands for further research or obtain the latest variants in
order to keep track of this malware.

REFERENCES
[1] http://ibsensoftware.com/products_aPLib.html.

[2] http://en.wikipedia.org/wiki/Mandatory_Integrity_
Control.

