WHO WASN’T RESPONSIBLE FOR
OLYMPIC DESTROYER

Paul Rascagneres & Warren Mercer
Cisco Talos, USA

{prascagn, wamercer}@cisco.com

ABSTRACT

This year’s Winter Olympic Games took place in Pyeongchang,
South Korea. Several media outlets reported that technical
issues — believed to be caused by a cyber attack — had occurred
during the opening ceremony. In this paper we will present the
malware that we have identified — with moderate confidence —
as having been used in the attack. First, we will describe the
malware’s propagation techniques and its destructive
capabilities. The second part of the paper will be about
attribution and how, in this particular case, the attacker included
several false flags in order to point to other well-known threat
actors. We will conclude by opening a discussion about how
hard attribution can be, and presenting our view concerning the
future of this discipline.

INTRODUCTION

In February 2018, the Olympic Games in Pyeongchang, South
Korea were disrupted by a cyber attack. Reportedly, the attack
resulted in the official Olympic Games website being taken
offline, meaning that spectators could not print their tickets.
Media reporting at the opening ceremony of the Games was
also impaired due to the Wi-Fi failing within the Olympic
Media Centre. On 12 February, Talos published a blog post [1]
detailing the functionality of the malware that we had identified
with high confidence as having been used in the attack. We
named the malware Olympic Destroyer.

This attack gained traction through the press, and several
different media outlets published conflicting stories in relation
to attribution.

In the first part of this paper we will provide technical details of
Olympic Destroyer, the wiper involved in the case, and in the
second part we will discuss the attribution. Indeed, the malware
did not write itself, the incident did not happen by accident, but
who was responsible?

2018

MONTREAL I+l
3 - 5 October 2018

"Olympic Destroyer" hit select networks and Wi-Fi systems at the Winter Games in
Pyeongchang on Friday, but they would not say for sure whether Russia or North

Korea are to blame.
The cyberattack follows a string of previous incidents involving various Winter ||
ding a spying operation that is believed to have !

Olympics tems, i

m-iginnled_ffum North Korea.
the hackers seem to have at least Jofe
cards that look rather Russian.

behind some calling

i is
year's Winter Olympics computer systems. This software nasty

possibly of Chinese origin,

Figure 1: Different media outlets published conflicting stories in
relation to attribution.

PART ONE: TECHNICAL ANALYSIS

Initial sample

The initial sample (edb1{f2521fb4bf748111f92786d260d40407a
2e8463dcd24bb09f908ee13eb9) is a binary that, when executed,
drops multiple files onto the victim host. These files are
embedded as obfuscated resources within the binary. The
embedded files have randomly generated file names, however
we found during our analysis that, when written to disk, the
hashes of these files were the same on multiple instances. As a
binary file, the initial sample could have been delivered in a
multitude of ways — the most likely is via a spear phished email
with Olympic Destroyer as a malicious attachment.

Two of the dropped files (the stealing modules) are executed
with two arguments: 123 and a named pipe. The named pipe is
used as a communication channel between the initial stage and
the dropped executable. The same technique was used in
BadRabbit and Nyetya.

The initial stage is responsible for propagation. Network
discovery is performed using two techniques:

e Checking the ARP table with the Windows GetIPNetTable
API

» Using WMI (using WQL) with the request: SELECT ds_cn
FROM ds_computer. This request attempts to list all the
systems within the current environment/directory.

The network propagation is performed using PsExec and WMI
(via the Win32_Process class). Figure 2 shows the code
executed remotely.

.rdata:®84240F8 almdExeCEchoStr: ; DATA XREF: WMI_RemoteExec+85To

.rdata: 884240Fa text "UTF-16LE", 'cmd.exe /c (echo strPath = Wscript.ScriptFullName &’
.rdata:@04240F8 text "UTF-16LE", ' echo.Set FS0 = CreateObject*("Scripting.FileSystem’
.rdata:884240F0 text "UTF-16LE™, 'Object”*) & echo.FS0.DeletefFile strPath, 1 & echo.S’
.rdata: 884240Fa text “UTF-16LE™, 'et oReg = GetObject™(“winmgmts:{impersonationLevel="
.rdata:88424DF8 text "UTF-16LE", 'impersonate}!\\.\root\default:StdRegProv"") & echo.’
.rdata:e8424DF@ text "UTF-16LE™, 'oReg.GetBinaryValue ~&H306@0001, "Environment™, “Da’
.rdata: 884240Fa text “UTF-16LE™, "ta”, arrBytes & echo.Set writer = FS0.0OpenTextFile™’
.rdata:@04240F8 text "UTF-16LE™, ' ("¥ProgramData¥\¥COMPUTERNAMEX.exe™, 2, True™) & ec’
.rdata:884240F8 text "UTF-16LE™, "ho.For i = LBound*(arrBytes") to UBound"(arrBytes™)’
.rdata: 8@424DF@ text "UTF-16LE™, ' & echo.s = s & Chr~(arrBytes~(i")") & echo.Next &°
.rdata:@04240F0 text "UTF-16LE", ' echo.writer.write s & echo.writer.close) > ¥Progr’
.rdata:ee424DFe text "UTF-16LE", 'amData®_wfrcmd.vbs &% cscript.exe ¥ProgramData®_w’
.rdata:ee424DF@ text “UTF-16LE™, 'fromd.vbs 8& %ProgramData®‘\XCOMPUTERNAMEX.exe',@
.rdata: 88425314 align 8

Figure 2: Code executed remotely.

2018

MONTREAL I+l
3 -5 October 2018

This code is responsible for leveraging cmd.exe to copy
the initial stage to a remote system in
$ProgramData%\%COMPUTERNAMES . exe and executing it
via a VBScript.

Lateral movement within an environment is achieved in a
number of ways. Generally speaking, there will either be one or
more exploits used to allow remote code execution without
credentials or we will see credentials/tokens being used within a
piece of malware. These credentials/tokens may either already
be known or they may be harvested during infection. With
Olympic Destroyer we see the use of on-the-fly patching for
credentials. Olympic Destroyer obtains these credentials from
the infected systems, both previously compromised and
currently compromised, to hard code a set of credentials into the
binary to allow lateral movement. The binary contains 32k bytes
of space, located from offset 0x26F1A to offset 0x2EF1A, to
allow for the patching of these credentials. Talos identified 44
unique credentials within the samples analysed relating to
Olympic Destroyer.

The burning question is: how did Olympic Destroyer obtain
those credentials? The embedded resources mentioned earlier
contain a couple of different credential-stealing modules.

Credential harvesting

To obtain the credentials Olympic Destroyer uses a browser
stealer and a system stealer. This means that Olympic Destroyer
attempts to harvest both from the browsers and from the
operating system on the victim machine.

Olympic Destroyer drops a browser credential stealer with the
final payload embedded in an obfuscated resource. As mentioned
previously, the sample must have two arguments to be executed.
The stealer supports Internet Explorer, Firefox and Chrome. The
malware parses the registry and queries the sqlite file in order to
retrieve stored credentials. SQLite is embedded in the sample.

J 2l [

i | o | o | i | [[E [

&

e[

&

M

&,

2 |

&

&,

2 |

&

&,

.data:00428CC1 00000021 C Pyeongchang20 18.com\\PCA.spsadmin
.data:00423CE2 00000010 C

.data:00428CF6 00000019 C Pyeongchang2018.com\\test
.data:00428D0F 0000000C [

.data:00428D1F 000000 1C C Pyeongchang2018.com\\adm.pms
.data:00428D3B 00000010 C

.data:00428D4F 00000021 C Pyeongchang20 18, com\\COS.5QLAdmIn
.data:00428D70 00000010 [

.data:00428084 00000021 C Pyeongchang2018.com\\pca.dnsadmin
.data:00423DA5 00000010 C

.data:004280B% 00000020 C Pyeongchang20 18.com\\PCA.imadmin
.data:004280D9 000D000F [

.data:00428DEC 00000022 C Pyeongchang20 18. com\\pca. perfadmin
.data:00423E0E 0000000D C -

.data:00428E1F 00000023 C Pyeongchang20 18.com\\jaesang.jeongs
.data:00428E42 0000000C [

.data:00428E52 00000022 C Pyeongchang20 18. com\\pca. dnsadmin2
.data:00428E74 0000000C C

.data:00428E84 00000023 C Pyeongchang20 18.com\\pca. cpvpnadmin
.data:00428EA7 000D000F [

.data:00428EBA 00000021 C Pyeongchang20 18.com\\pca. dmzadmin
.data:00428EDB 0000000C C

.data:00423EEB 00000021 C Pyeongchang20 18,com\\PCA.ERPAdmIn
.data:00428F0C 00000010 C

il e =]

mov ebx, [esp+248h+var_234]
mov edx, offset aSelectOriginUr ; " ECT origin_url, username_value, pass”...
mov [esp+24Bh+var_238], eax
mov ecx, ebx

mov [esp+24B8h+var_228], eax
lea eax, [esp+248h+var_228]
push eax

lea eax, [esp+24Ch+var_238]
push eax

push <]

push]

push BFFFFFFFFh

call sub_1885C938

add esp, 14h

test eax, eax

jz short loc_18@81E72

Figure 3: Talos identified 44 unique credentials within the
samples analysed.

Figure 4: SQLite is embedded in the sample.

In addition to the browser credential stealer, Olympic Destroyer
drops and executes a system stealer. The system stealer attempts
to obtain credentials from LSASS with a technique similar to
that used by Mimikatz. Figure 5 shows the output format parsed
by the initial stage.

Using these two methods the malware is able to obtain
additional credentials to support further lateral movement within
the environment.

Destruction

The initial execution of the malware results in multiple files
being written to disk, as discussed. Following this, the malware

T
il = = il = 5]
mov X BLx, ax
lea rdx, aStartcred ; "<STARTCRED:" loc 1B@812770:
shr ros, 1 lea rax, asc_18@e22a34 ; "\n"
l=a rax, asc_lB@a2rAlC ; “h\n" mov [rspt+E8h+var_58], rax
ma [rsp+BBh+var_ 48], rax lea rdx, astartcred @ ; "<STARTCRED:"
lea rax, atEndcred "<ENDCRED>" lea rax, aEndcred_@ ; "<EMDCRED>"
mow [rsp+i8h+var 58], rax mow [rsptidh+var_58], rax
maw A, [r'bp—i—f\‘.: lea rex, alsWeMzLaWzisls ; "¥1sBaT '\ EwT¥] <Bwr¥]loE]s"
maw [rsp+EBhdvar 58], rax lea rax, aStartpass @ ; "<STARTPASS:"
lea rax, aStartpass ; "<STARTPASS: mow [rsp+&8h4var_c8], rbp
mov [rsp+iBh+var 68], rcx mov [rsp+Edh+var 6B], rax
lea rex, alshzWzLsShsls ; "Ela¥e?\\EwTElsX. *s¥lskls" | |call sub_1E88154F8
mow [rsptE8htvar BE], rax
call sub_1886154F8
jmp short loc_186812789

Figure 5: Output format parsed by the initial stage.

WWW.VIRUSBULLETIN.COM/CONFERENCE

begins its destruction element. By leveraging cmd.exe from the
host the malware first deletes all possible shadow copies on the
system using vssadmin:

C:\Windows\system32\cmd.exe /c c:\Windows\system32\
vssadmin.exe delete shadows /all /quiet

Next, once again leveraging cmd.exe on the host, we see the
author using wbadmin.exe. For those not familiar with
wbadmin, this is the replacement for ntbackup on modern
operating systems:

C:\Windows\system32\cmd.exe /c wbadmin.exe delete
catalog -quiet

This step is carried out to ensure that file recovery is not trivial

— WBAdmin can be used to recover individual files, folders and
even whole drives so this would be a very convenient tool for a
sysadmin to use to aid recovery.

The next step the attacker takes in this destructive path is once
again to leverage cmd.exe, but this time using bededit, a tool
used for boot config data information, to ensure that the
Windows recovery console does not attempt to repair anything
on the host:

C:\Windows\system32\cmd.exe /c bcdedit.exe /set

{default} bootstatuspolicy ignoreallfailures & bcdedit
/set {default} recoveryenabled no

The attacker has now attempted to make recovery extremely
difficult for any impacted hosts. To further cover the malware’s
tracks and make analysis more difficult, the System & Security
Windows event log is deleted:

C:\Windows\system32\cmd.exe /c wevtutil.exe cl System

C:\Windows\system32\cmd.exe /c wevtutil.exe cl
Security

Wiping all available methods of recovery shows that this
attacker had no intention of leaving the infected machine
useable. The purpose of this malware is to perform destruction
of the host, leave the computer system offline, and wipe remote
data. We can see these functions within the Olympic Destroyer
sample in Figure 6.

To finish its destructive phase Olympic Destroyer then disables

2018

MONTREAL I+l
3 - 5 October 2018

ecx, [ebp+dwBytes]

ecx ; pcbBytesNeeded
esi ; cbBufSize

esi ; lpServiceConfig
eax 3 hservice
[ebp+dwBytes], esi

ebx ; QueryServiceConfigh

[ebp+dwBytes] ; dwBytes

8 ; dwFlags

edi ; GetProcessHeap

eax ; hHeap
ds:HeapAlloc

esi 3 lpDisplayName
esi ; lpPassword

esi 3 lpServiceStartName
esi 3 lpDependencies
esi 3 lpdwTagId

esi ; lpLoadOrderGroup
esi ; lpBinaryPathName
@FFFFFFFFh ; dwErrorControl
4 ; dwStartType
@FFFFFFFFh ; dwServiceType
[ebpt+hservice] ; hService

[ebp+lpServiceConfig], eax
ds:ChangeServiceConfigh

eax, [ebp+dwBytes]

eax 3 pcbBytesNeeded
[ebp+dwBytes] ; cbBufsize
[ebp+lpsServiceConfig] ; lpServiceConfig
[ebpt+hservice] ; hService

ebx ; QueryServiceConfigh

eax, eax

short loc_4@13F5

Figure 7: The malware uses the ChangeServiceConfigW API to
change the start type to 4.

The malware uses the ChangeServiceConfigW API to change
the start type to 4 which means: ‘Disabled: Specifies that the
service should not be started’ (see Figure 7).

Additionally, the malware lists mapped file shares and for each
share, it will wipe the writable files (using either uninitialized
data or 0x00 depending on the file size). The purpose is to
destroy the files as quickly as possible. With this method, the
malware can cause as much disruption in as little time as

all available Windows services. possible.
alMindowsSystem: ; DATA XREF: WinMain(x,x,x,x}+75%T0
text "UTF-16LE"™, 'c:\Windows\system32\vssadmin.exe',8
align 4
aDeleteShadowsh: ; DATA XREF: WinMain(x,x,x,x)+78%Tc
text “UTF-16LE", ‘delete shadows /all /quiet’,8
align 4
aWbadminExe: ; DATA XREF: WinMain(x,x,x,x)+7Fc
text "UTF-16LE", ‘wbadmin.exe’,®
:984879E4 aDeleteCatalogQ: ; DATA XREF: WinMain{x,x,x,x}+B4to
:BB4879ES text "UTF-16LE", "delete catalog -quiet’,®
1884874190 aBcdeditExe: ; DATA XREF: WinMain(x,x,x,x)+98%tc
82407418 text “UTF-16LE", ‘bcdedit.exe’,@
B7028 aSetDefaultBoot: 5 DATA XREF: WinMain(x,x,x,x}+35Te
28 text "UTF-16LE", "/set {default} bootstatuspolicy ignoreallfailures &°
seRLevA2E text "UTF-16LE", ' bcdedit /set {default} recoveryenabled no®,8
188407 akevitutilExe: ; DATA XREF: WinMain{x,x,x,x)}+Alto
H:) text "UTF-16LE"™, 'wevtutil.exe',@
:BB4ATAFE align 18h
a: 884687608 aClSystem: ; DATA XREF: WinMainix,x,x,x)+A6Ta
88487888 text “UTF-16LE", ‘cl System',®
;88487814 aClSecurity: ; DATA XREF: WinMain(x,x,x,x}+B2%Te
2: 08487814 text "UTF-16LE", 'cl Security',@
c@a4avE2C align 18h

Figure 6: The purpose of this malware is to perform destruction of the host, leave the computer system offline, and wipe remote data.

PAPER PRESENTED AT VB2018 MONTREAL 3

2018

MONTREAL I+l
3 -5 October 2018

WINLOGON.EXE

Figure 8: Summary of the global workflow.

Finally, after modifying all the system configuration, the
destroyer shuts down the compromised system.

Legitimate file

Olympic Destroyer also drops the legitimate, digitally signed,
PsExec file in order to perform lateral movement. The use of
this legitimate tool from Microsoft is an example of an attacker
leveraging legitimate tools within their arsenal. Using legitimate
tools like PsExec will save the adversary time by eliminating the
need to write their own tooling. A free alternative they can wrap
up within their malware is a much easier option in this instance.

Global workflow

Figure 8 presents a summary of the global workflow of the
malware, starting with the initial stage (Winlogon.exe) and the
different modules.

PART TWO: ATTRIBUTION, OR WHO WASN'T
RESPONSIBLE

Attributing attacks to specific malware writers or threat actor
groups is neither simple nor an exact science. Many parameters
must be considered, analysed and compared with previous
attacks in order to identify similarities. As with any crime,
cybercriminals have preferred techniques, and tend to leave
behind traces, akin to digital fingerprints, which can be found
and linked to other crimes.

In terms of cybersecurity incidents, analysts would look for
similarities or attributes such as:

* Tactics, techniques and procedures (TTPs) (how the
attacker conducted the attack)

¢ Victimology (the profile of the victim)
¢ Infrastructure (the platforms used as part of the attack)

¢ Indicators of Compromise (IOCs) (identifiable artifacts left
behind during an attack)

e Malware samples (the malware used as part of the attack)

One of the great things about software engineering is the ability
to share code, to build applications on top of libraries written by

others, and to learn from the successes and failures of other
software engineers. The same is true for threat actors. Two
different threat actors may use code from the same source in
their attacks, meaning that their attacks would display
similarities, despite being conducted by different groups.
Sometimes threat actors choose to include features from another
group in order to frustrate analysts and try to lead them to make
a false attribution.

In the case of Olympic Destroyer, what is the evidence, and
what conclusions can we draw regarding attribution?

Without contributions from traditional intelligence capacities,
the available evidence linking the Olympic Destroyer malware
to a specific threat actor group is contradictory, and does not
allow for unambiguous attribution. The threat actor responsible
for the attack has purposefully included evidence to frustrate
analysts and lead researchers to false attribution flags.
Attribution, while headline grabbing, is difficult. This must
force one to question attribution that is purely software based.

Olympic Destroyer lineup of suspects

The Lazarus group

The Lazarus group, also referred to as Group 77, is a
sophisticated threat actor that has been associated with a number
of attacks. Notably, a spinoft of Lazarus, referred to as the
Bluenoroff group, has been identified as having conducted attacks
against the SWIFT infrastructure in a bank located in Bangladesh.

The filename convention used in the SWIFT malware, as
described by BAE Systems [2], was: evtdiag.exe, evtsys.exe and
evtchk.bat.

The Olympic Destroyer malware checks for the existence of the
following file: %programdata%\evtchk.txt.

There is a clear similarity in the two cases. This is nowhere near
proof, but it is a clue, albeit a weak one.

Further clues are found in similarities between Olympic
Destroyer and the wiper malware associated with Bluenoroff,
again described by BAE Systems [3]. In the example shown in
Figure 9, the Bluenoroff wiper is on the left, and the Olympic
Destroyer wiper on the right.

WWW.VIRUSBULLETIN.COM/CONFERENCE %NQQIJLﬁ

3 - 5 October 2018

==] e ———
e
o rofeytesun i tena deord pe -181ch
T— e LARGE_TNTEGER pir 10
| i _céec) bluenorsfiuipes (1oCsT. Tori e
~ ar 1910n duord par -1016h
slanarsttuiper proc ne: e e
T natiers byte ptr -1s08y
mbaroryyiamis Tesens duard pir -209H var_ta deord pi
acfars yte g woon —
e T -
i — w1
1| 1acs,_pests -
n e
ey en
N T
e 27 =
- H
len odi, [eaprindmneror FFF] iea
v (esprancemenatter], 0} -
rop stosd -,
e e
s 3 Wemplaterile
s } o lagadnditiribetes pah
man } actrestisabisporition e
o } dobecarttattribacs B e
o~ Lesprimane or 1 ekane] ms [shprar t010], e
e) iiharetiode - - et
man e D iredticess all e
oo } ok ek %
ol SR o pen esd 1 Wemplaterile
o e) } v agtngareriures
oot 2 § avreationdispesition
e sl wrrrrrern
ot Sort lox_ st o est § ipsecurimyarerinvees
- prn e I tesnarcrute
P aewewn ; seesiressceess
ke + Tofilctsne

ol deicresterited
o
e
§ duatethod
posh e LoDt tanceTahmmettigh s
peih SIS) istancalahors E, dasietfSlcbainker
e ; arile o, Ty i
il edi ; tetridens n i e r——
lea eex. [sphI0asnsticmierofoytesuritten] = h i Iictacetono
P inoverlaped } b
o | imaberotoytes stten [= sertiiier
- o Janl ot ; sartisotnter
push esi s Lapped
- Al Oy te st e lea ean, [ehprsemberofsptomritien]
s push ean Lobumber i csbi e
w push 1 ; mberofBytesTourite
1 lea can, [ebprbufier]
st o P lpgutfer
Gl } wile
pesh
psh
call
push con) dtenicthad
pesh sow J ipistancoTohavetigh
pesh com) 1bistanceTofore
£ilasizent|
exny dword ptr [espe1easheriLesiae]
g
ook e + Ipritesize
- reile
ol xsoetrilesiants
[+ anrvesctbot
[pash et + ToistanceTabovesigh
L } IblstanceTonme

b ek
call el ; Setf lekainter
, e

et

‘EL e

Loc_amzs
b ecw, [espivar.

woa)|
100c)|

les_tnarar 3 Ipoverisspes
s, [svpismsrrotyytesritzan)
e i dpthambe

s ttes)
wx lhmbarfBytas Tohrite
P

AT —

hers daz assan

o, eax
cax, deand plr [espeiasanarilesizess] I
T I

wer_1015], eax

e, ot ptr [espriasiner tiesioe]|
e, ecn
Jo st loc smisry

i weile

b
Pyt e,
P

; mgect]

Tossttandle
x, [oupsinrinsipeilsscms]|
eher

setandle
s, e

o i

b
eap, 1eien

Blusarsuipes s

B_sacuety hack_cosklaf § __security, chack_cookla(s)

s cmcsusicestaes

Figure 9: Left: Bluenoroff wiper; right: Olympic Destroyer wiper.

PAPER PRESENTED AT VB2018 MONTREAL 5

2018

MONTREAL I+l
3 -5 October 2018

Clearly, the code is not identical, but the very specific logic of
wiping only the first 0x1000 bytes of large files is identical and
unique to the two cases. This is stronger evidence than the file
name check.

However, both the file names used by Bluenoroff and the wiper
function are documented and available to anyone. The real
culprits could have added the file name check and mimicked the
wiper function simply in order to implicate the Lazarus group
and potentially distract from their true identity.

Olympic Destroyer sample:
23e5bb2369080a47df8284e666cac7cafc207f3472474a9149f8
8cla4fd7a9b0

Bluenoroff sample #1:
2e086350239380f56470c19d6a200f7d251c7422c¢7bcS5ce74730
ee8bab8e6283

Bluenoroff sample #2:
5b7c¢970fee7ebe08d50665f278d47d0e34c04acc19a91838deba
3fc63a8e5630

Kaspersky Lab identified [4] another link between Olympic
Destroyer and samples used for the SWIFT attacks. This link is
located in the header of the samples. More specifically in the Rich
header. Indeed, the Rich header of the Olympic Destroyer sample
and Bluenoroff sample #1 are identical. The checksum (and XOR
key) located after the ‘Rich’ magic value is exactly the same (see
Figures 10 and 11).

Offzet o1 2z 3 4 5 8 7

0oooooo0 4p 5& 90 00 03 00 00 00
oooooolo BS 00 00 00 00 00 00 00
oooooozo) 00 00 00 00 0O 00 00 00
oooooos0) 00 00 00 00 00 00 00 00
oooooo4n | 0E LF BA OE OO B4 08 CD
ooononso - &9 73 20 70 72 AF 67 72 &1 6D 20 63 61 6E 6E AF
ooononsn - 74 20 62 65 Z0 72 75 6E 20 69 6E 20 44 4F 53 20
0oonoo70 6D 6F 64 65 ZE 0D OD D& 24 00 00 00 00 00 00 00
ooonooso D3 1E 27 79 97 T7F 49 Zh 97 TF 49 ZA 97 TF 49 ZA | L. 'yl IFOUTFLUIF
0oonoos0 EC 63 45 2A 96 TF 49 24 Fg 60 43 2A 9C 7F 49 24 | LcE*..I%. "C*,.I*
00o0o0An 14 63 47 2A 92 TF 49 24 Fg 60 4D 2A 93 7F 49 24 | LoG¥*. . I%. "M*, . I*
000000BD 54 70 14 2A 90 TF 49 24 97 7F 45 ZA DA TF 49 ZA | Tp.*..I%..H*..I*
0oo0ooco Al 59 42 2A 94 TF 49 24 52 69 63 68 97 TF 49 24 | LYB*..I*Rich..I*
0ooooono 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000ED | 00 00 00 00 00 00 00 00 S50 45 00 00 4C 01 05 00

is.program. canno
t.be.run.in.D0O3.

Figure 10: Olympic Destroyer.
ae9ade244a9b3c77d489deeSaeaf35a7c3ba31b210e76d81ef2e
91790f052¢85.

Offzet o1 2z 3 4 5 6 7 8

00000000 | 40 5& 90 00 03 00 00 00 04 00 00 00
00000010 | BS 00 00 00 00 00 00 00 40 00 00 00
0ooo00z0 | 00 00 00 00 0O 00 00 00 00 00 00 00
0ooooos0 | 00 00 00 00 0O 00 00 00 00 00 00 00
oooooo4n | 0E LF BA OE OO0 B4 08 CD 21 B& 01 4C
Qooooosn | 69 73 20 70 72 6F 67 72 6l 60 Z0 63 61 6E 6E 6F @ is.program.canno
ooooooen | 74 20 62 65 20 72 75 BE 20 69 6E 20 44 4F 53 20 | t.be.run.in.DO3.
oooooo70 | 6D 6F 64 65 ZE OD OD OA 24 00 00 OO0 00 00 00 00 | mode....§.......
oooooosn | D3 LE 27 79 97 TF 49 A 97 T7F 49 Zh 87 TF 49 ZA | L' IFLLIRLLIF
oooooos0 | EC 63 45 ZA 96 TF 49 2A F& 60 43 Zh 8C 7F 49 ZA | (cE¥*..I%."C*..I¥
0o0000&a0 | 14 63 47 ZA 92 TF 49 2A F& 60 4D 2Zh 93 7F 49 ZA | (oG, . I%. "M*..I¥
0o0000ED | 54 70 14 ZA 90 T7F 49 A 97 7F 45 Zi DA 7F 49 ZA | Tp.*..I%..H*..I*
0ooo0oco | Al 55 42 Zh 94 TF 49 2A 52 69 63 65 87 7F 49 ZA | (YB*..I*Rich..I¥
Qooooopo | 00 00 00 00 00 00 00 00 o0 00 00 00 00 00 00 0O
QO00000ED | 00 00 00 00 00 00 00 00 S0 45 00 00 4C 01 03 00

Figure 11: Bluenoroff.
ae086350239380f56470c19d6a200f7d251c7422c7bc5ce7473
Oee8bab8e6283.

If we look at the information stored in this header, we can see
that the compiler is Visual Studio 2003. This information is true

concerning the Bluenoroff sample, however if we look closely
at the Olympic Destroyer sample, it’s wrong: based on
Universal C Runtime (CRT) Olympic Destroyer was compiled
with Visual Studio 2010. The author simply copied and pasted
the header from Bluenoroff to Olympic Destroyer. This action is
strange and extremely specific — an actor has gone out of their
way to perform this action. The tools using code similarities
generally ignore the Rich header and only work on the
subsequent code.

APT3 & APT10

Intezer Labs [5] identified code sharing between Olympic
Destroyer and malware used in attacks attributed to the APT3
and APT10 groups.

Intezer Labs discovered that Olympic Destroyer shares 18.5%
of its code with a tool used by APT3 to steal credentials from
memory. Potentially, this is a very strong clue. However, the
APTS3 tool is, in turn, based on the open-source tool Mimikatz.
Since Mimikatz is available for download by anyone, it is
entirely possible that the author of Olympic Destroyer used
code derived from Mimikatz, knowing that it had been used by
other malware writers.

Intezer Labs also spotted similarities in the function used by
Olympic Destroyer to generate AES keys and that used by
APT10. According to Intezer Labs, this particular function has
only ever been used by APT10. Maybe the malware writer has
let slip a possible vital clue to their identity.

Nyetya

The use of code derived from Mimikatz to steal credentials was
also seen in the Nyetya [6] (NotPetya) malware of June 2017.
Like Nyetya, Olympic Destroyer spread laterally by abusing the
legitimate functions of PsExec and WMI. Like Nyetya, Olympic
Destroyer uses a named pipe to send stolen credentials to the
main module.

Unlike Nyetya, Olympic Destroyer didn’t use the EternalBlue
and EternalRomance exploits for propagation. However, the
perpetrator has left artifacts within the Olympic Destroyer
source code to insinuate the presence of SMB exploits.

Olympic Destroyer includes the definition of these four
structures, as shown in Figure 12, that can also be found in the
public EternalBlue proof of concept [7], as shown in Figure 13.

These structures are loaded during runtime, when Olympic
Destroyer is executed, but remain unused. Clearly, the author
knew of the EternalBlue PoC, but the reason why these
structures are present is unclear. It’s likely the author wanted to
lay a trap for security analysts to provoke a false attribution.
Alternatively, we could be seeing the traces of functionality
which never made it into the final malware.

CONCLUSION

Attribution is hard. Rarely do analysts reach the level of
evidence that would lead to a conviction in a courtroom. Many
were quick to jump to conclusions, and to attribute Olympic
Destroyer to specific groups. However, the basis for such

2018

MONTREAL I+l
3 - 5 October 2018

push ebp
mov ebp, esp
push ecx
push 8 ; size_t
call ??2@YAPAXI@Z ; operator new(uint)
push 1
push 0 push ebp
push 2 mov ebp, esp
push) push ecx
push (2] push 8 ; size_t
push 1 call ??2@YAPAXI@Z ; operator new(uint)
push 28022Ah push 1
push offset aliqgiib ; "IIQQIIB" push]
push eax push 2
mov [ebp+var_4], eax push 2]
call sub_401A60 push [2]
add esp, 28h push 1
mov dword_430AB0, eax push 1C022Ah
mov esp, ebp push offset aIiiiiib ; "IIIIIIB"
pop ebp push eax w(uint)
retn mov [ebp+var_4], eax
push) call sub_401A60
push 2 add esp, 28h
push ° mov dword_4306A70, eax
push ° mov esp, ebp
push 2] pop ebp
push ° retn
push 1 push 1
push 38022Ah push 24022Ah
push offset aliqqqqiib ; "IIQQQQIIB" push offset aliiiiiiib ; "ITTIITITIIB"
push eax push eax
mov [ebp+var_4], eax mov [ebp+var_4], eax
call sub_401A60 call sub_401A60
add esp, 30h add esp, 30h
mov dword_430A90, eax mov dword_430A50, eax
mov esp, ebp mov esp, ebp
pop ebp pop ebp
retn retn

Figure 12: Olympic Destroyer includes the definition of four structures that are also found in the EternalBlue proof of concept.

accusations are frequently weak. Now that we are seeing
malware authors placing multiple false flags in their code,
i b attribution based on malware samples alone has become even
WIN7_64_SESSION_INFO = { more difficult.

"SESSIOM_SECCTX_OFFSET": @wa@d,

info for modify session security context

 SESSTON_ISNULL OFFSET : oxba, For the threat actors considered, and with the evidence which

VEAKE_SECCTY": pack('<ITOQIIB’, 0x286223, 1, 0, 6, 2, 8, 1), we have available, there is no clear smoking gun indicating a
"SECCTX_SIZE': @x28, guilty party. Other security analysts and investigative bodies
) may have further evidence to which we do not have access.

Organizations with additional evidence, such as signal
intelligence or human intelligence sources, which may provide

"SESSION_SECCTX_OFFSET": @xaa,

| SESSTON TSNULL OFFSET': 096, significant clues to attribution, may be the least likely to share

"EAKE_SECCTX': pack('<ITIIIIB*, Gx1c822a, 1, 0, 8, 2, 0, 1), their insights so as not to betray the nature of their

"SECCTX_SIZE': exic, intelligence-gathering operation.

WIN7_32_SESSION_INFO = {

The attack which we believe Olympic Destroyer to have been
associated with was clearly an audacious one, almost certainly

wind+ info

WINS_64_SESSION_INFO = { conducted by a threat actor with a certain level of sophistication
"SESSTON_SECCTX_OFFSET': 0xb8, who did not believe that they would easily be identified and held
"SESSION_ISNULL_OFFSET": @xca, accountable.

"FAKE_SECCTX': pack{'<IIQQQQIIB', @x38022a, 1, @, @, @, @, 2, 8, 1),
"SECCTY_SIZE': 8x38, Code sharing between threat actors is to be expected.
¥ Open-source tools are a useful source of functionality, and

adopting techniques from successful attacks conducted by other
groups is likely to be a source of misleading evidence leading to
false attribution.

WINS_32_SESSION_INFO = {
"SESSION_SECCTX_OFFSET": @xa8,
"SESSION_ISNULL_OFFSET": @x9e,
"FAKE_SECCTX': pack('<IIITIIIIE", 0x24822s, 1, @, 0, @, 8, 2, 8, 1),/ Equally, we can expect sophisticated threat actors to take
"SECCTX_SIZE™: Bx24, advantage of this, and to integrate ‘evidence’ into their code that

is designed to fool analysts, leading the analysts to attribute the

attacks to other groups. It is likely that, threat actors take
Figure 13: Public EternalBlue proof of concept. pleasure in reading incorrect information published by security

2018

MONTREAL I+l
»" 3-50ctober 2018

analysts. This could even be taken to the extreme of a country
denying an attack based upon evidence presented by an
unwitting third party due to false attribution. Every time there is
misattribution it gives adversaries something to hide behind. In
this heightened era of fake news, attribution is a highly sensitive
issue.

As their skills and techniques evolve, it is likely that we will see
threat actors further adopting ruses to complicate and confuse
the process of attribution. Attribution is already difficult. It is
unlikely to become easier.

REFERENCES

[1] Mercer, W.; Rascagneres, P. Olympic Destroyer Takes
Aim At Winter Olympics. Talos Intelligence blog.
12 February 2018. https://blog.talosintelligence.com/
2018/02/olympic-destroyer.html.

2] Shevchenko, S. Two bytes to $951M. BAE Systems
Threat Research Blog. 25 April 2016.
https://baesystemsai.blogspot.com/2016/04/two-bytes-
to-951m.html.

[3] Shevchenko, S. Cyber heist attribution. BAE Systems
Threat Research Blog. 13 May 2016.
https://baesystemsai.blogspot.com/2016/05/cyber-heist-
attribution.html.

[4] The devil’s in the Rich header. Kaspersky Lab
SecureList. § March 2018. https://securelist.com/
the-devils-in-the-rich-header/84348/.

[5] Rosenberg, J. 2018 Winter Cyber Olympics: Code
Similarities with Cyber Attacks in Pyeongchang.
Intezer Blog Cybersecurity DNA. 12 February 2018.
http://www.intezer.com/2018-winter-cyber-olympics-
code-similarities-cyber-attacks-pyeongchang/.

[6] Chiu, A. New Ransomware Variant “Nyetya”
Compromises Systems Worldwide. Talos Blog. 27 June
2017. https://blog.talosintelligence.com/2017/06/
worldwide-ransomware-variant.html.

[7] GitHub. MS17-010/zzz_exploit.py. https://github.com/
worawit/MS17-010/blob/master/zzz_exploit.py.

