
OPEN SOURCE MALWARE LAB SIMMONS

1VIRUS BULLETIN CONFERENCE OCTOBER 2016

 OPEN SOURCE MALWARE LAB
Robert Simmons

ThreatConnect, USA

Email rsimmons@threatconnect.com

 ABSTRACT
The landscape of open source malware analysis tools improves
every day. A malware analysis lab can be thought of as a set of
entry points into a tool chain. The main entry points are a fi le, a
URL, a network traffi c capture, and a memory image. This paper
is an examination of the major open source tools that satisfy the
analysis requirements for each of these entry points. Each tool’s
output can potentially feed into another tool for further analysis.
The linking of one tool to the next in a tool chain allows one to
build a comprehensive automated malware analysis lab using
open source software.

For fi le analysis, the three major versions of Cuckoo Sandbox
will be examined. To analyse a potentially malicious URL, the
low-interaction honeyclient Thug will be covered. Next, if one
has a network capture (PCAP) to analyse, the Bro Network
Security Monitor is a great option, and will be covered. Finally,
for cases in which the analysis target is a memory image, the
Volatility Framework will be examined. Each of the inputs and
outputs of the tools will be reviewed to expose ways in which
they can be chained together for the purpose of automation.

 INTRODUCTION
There is a large and ever growing selection of tools that a
researcher can use to analyse malware today. By identifying the
major entry points into the malware analysis process, one can
evaluate and choose the best tool to handle the analysis of each
entry point. The four major entry points examined here are: a
fi le, a URL, a recording of network traffi c, and an image of
volatile memory. Each of these entry points is analysed using a
freely available, open source tool. To build a complete open
source malware lab that can begin analysis with any of the four
major entry points, output from each tool must be fed into the
next tool in the analysis tool chain.

Before digging deeper into each tool and how they can be tied
together, we must spend time explaining why an open source
malware lab is needed. First and foremost, it is one of the basic
weapons in the armoury of a threat researcher. Of the four stages
of malware analysis – fully automated analysis, analysis of static
properties, interactive behavioural analysis, and manual code
reversing – this lab covers the fi rst two stages, which are
considered the easier stages [1]. Additionally, if one is hunting
for threats within an enterprise, having a malware lab available
through which collected samples can be run immediately is
crucial. Finally, a malware lab is an important component of
network defence. Network security monitoring tools that carve
fi les from network traffi c can send these fi les to the lab for
analysis. Similarly, inbound emails with attachments and URLs
can have these two analysed by the lab for signs of malicious
activity. Finally, many host-based intrusion detection systems

will send unknown executables to their control server for further
analysis. These fi les can in turn be analysed by an open source
malware lab.

 CUCKOO SANDBOX

The fi rst tool is really more of a large collection of tools all
orchestrated together into a single fi le analysis system. In this
case, a fi le not only includes all types of executables, but also
Microsoft Word, Excel, and PowerPoint fi les, as well as PDFs,
Java JAR fi les, and Flash fi les, among others. Essentially, any fi le
that can be executed or that can lead to code execution post
exploitation is included.

Cuckoo currently has three major fl avours: stable (1.2) [2], release
candidate (2.0 RC1) [3], and cuckoo modifi ed (a.k.a. Spender
Sandbox) [4]. Cuckoo modifi ed and the current release candidate
have a few important differences from the stable version. First is
the normalization of fi le and registry paths. In cases where a
dropped fi le’s path would be different depending on Windows OS
versions, Cuckoo will replace the version-specifi c portion of the
path with a standard environment variable. This allows one to use
data collected from multiple versions of Windows and still be able
to perform analysis and comparisons across these differences. An
example of this would be changing C:\Users\WSuser\AppData\
bonzo\AIDVFP.jpg to %APPDATA%\bonzo\AIDVFP.jpg. A
second important difference is the variety of OS support in the
current version of Cuckoo. It supports Mac OS X, Linux and
Android. Finally, the ability to send outbound malware network
traffi c to a remote VPN or with Tor anonymization allows the
researcher to conceal the IP address of the Cuckoo instance, and to
adjust the apparent geographic location of the victim workstation
to fool location-aware malware.

Two pieces of software that work in concert with Cuckoo
Sandbox are Paranoid Fish (pafi sh) [5] and VMCloak [6].
Paranoid Fish detects certain anti-analysis techniques that
malware will use to determine whether it is being observed in a
VM or in a sandbox. If detected, the malware may behave in a
different way from normal, or may not display any behaviour at
all. To correct for these detectable features of a sandbox,
VMCloak is used to obfuscate these features so that they are less
detectable by malware. VMCloak also helps greatly by building
the VMs for use in Cuckoo dynamically and installing software
versions automatically.

From the Cuckoo report, specifi cally the JSON report, network
indicators are collected, such as IP addresses, hostnames, URLs,
and hashes of dropped fi les. Further analysis down the tool chain
examined here can be done on the dropped fi les as well as the
captured network traffi c, and the URLs visited during the
sandbox session. One problem to look out for when automating
this process is to watch how many generations of parent-child
dropped fi les are to be analysed automatically. One does not
want to end up with an infi nite loop of dropped fi les that are all
essentially the same except for dynamically generated padding
added before the drop. This can be corrected for by stopping the
automated analysis after about six generations. It is always good
to add an alert if a sample reaches this point so that manual
checks of the malware and the condition of the dropped fi les can
be performed.

OPEN SOURCE MALWARE LAB SIMMONS

2 VIRUS BULLETIN CONFERENCE OCTOBER 2016

 THUG

Thug [7] is a low-interaction honeyclient. This is a software
system that pretends to be a browser. Its goal is to coax a
drive-by URL to deliver its payload. A drive-by is a URL that
may try to determine the version of software the visitor is
running and then deliver an exploit of some kind. The end result
is that malicious code is run on the victim’s system without any
user action beyond clicking the initial drive-by link. A
honeyclient such as Thug will try to trigger the drive-by and
then capture the payload. It does this by changing its user-agent
string to any number of common combinations of operating
system and browser, including iOS and Android. It also is able
to present a specifi c version of a plug-in such as Java or Flash to
make sure that the vulnerable version the drive-by is seeking is
presented to the malicious URL properly, and the payload is
subsequently captured. A second type of URL that is a bit easier
to work with is a malware download URL. This type of URL
typically hosts a second-stage malware implant, or an updated
version of the malware. For these, Thug will simply visit the
URL and download the payload fi le for analysis.

Thug’s most important outputs are its JSON formatted logs
which can be culled for network indicators such as URLs,
hostnames, and IP addresses. In addition to these, if the drive-by
is triggered and the payload captured, these fi les can then be
automatically analysed by Cuckoo as another stage of analysis
in this tool chain. Finally, Bro can be used to analyse the
network traffi c produced during the visit to the URL.

 BRO

Bro [8] is a network security monitoring (NSM) framework that
is used to analyse live packet capture or recorded packet capture
in the form of PCAP fi les. NSM is Bro’s primary use, but is not
how it is utilized in this open source malware lab. In this case,
Bro is used to example the captive traffi c of a malware sample
being run alone in a controlled environment.

Bro consists of a large set of scripts written in the Bro scripting
language. Each script or set of scripts in turn produces a Bro
log. This is a text fi le with data gleaned from aspects of the
packet capture. A change to the local.bro confi guration fi le
changes the output format of the Bro logs to JSON format for
ease of automated consumption.

The main Bro logs that are important for malware analysis are
the conn.log, dns.log, http.log, fi les.log, and the extract_fi les
folder where fi les carved from the network traffi c are collected
for analysis. Network indicators can be collected from conn.log,
dns.log, and http.log, whereas fi le hashes used for fi le indicators
can be gathered from the fi les.log. URLs can be further analysed
using Thug, and fi nally, executables and documents carved from
the network traffi c can be further analysed using Cuckoo
Sandbox. Again, take care when analysing the output to make
sure that an infi nite loop is not created. To correct for this, make
sure not to re-analyse a URL or fi le that has already been
analysed, and restrict parent-child analyses to about six
generations. Make sure to include alerts when this type of
restriction is used so that manual investigation can be performed
on the samples.

 VOLATILITY

Volatility [9] is a memory analysis framework that is used to
extract artifacts from volatile memory. It currently supports
Windows, MacOS X and Linux operating systems. One of the
main tasks that can be performed with Volatility is to fi nd
hidden or unusual processes. It is always good to start with a
clean memory image that one can compare with one that has
been infected with a malware sample. Process lists can be run
through diff to fi nd processes that did not exist in the clean
image. Two main Volatility tools for this purpose are psscan and
pslist. Additionally, dumps of these processes can be extracted
and then further analysed using Cuckoo after import tables have
been repaired suffi ciently.

In addition to the variety of executables that can be extracted and
dumped for further analysis, many network connections made by
processes can be analysed and the destination IP address and
port collected as a network indicator. Finally, visited URLs can
be pulled out of the IE browser history, but these are typically
found more often in a memory image of a victim rather than a
specifi cally built machine dedicated to malware analysis.

 CONCLUSION

The most important concept when lining these tools up into a
tool chain is to have the output from one tool feeding the input of
the next tool that can consume and analyse that particular output
type. Carved and dropped fi les are analysed with Cuckoo
Sandbox, URLs with Thug, collected PCAP fi les with Bro, and
collected memory images with Volatility. For this project,
ZeroMQ, and open source message queue software was used, but
any type of message queuing system is appropriate in this case.
It was found that using a web server such as NGINX to move the
fi les themselves from one tool in the tool chain to another is
much more effi cient and easier to work with than adapting the
message queue to handling these large fi les itself. In this
confi guration, the message queue transmits the server and fi le
location at which the next tool in the tool chain can pick up the
fi le that it requires for analysis. For the report output from the
tools mentioned, each provides for some type of JSON-based
output that is quite easily consumed using Python scripts as the
glue that holds together the open source malware lab.

REFERENCES
[1] https://zeltser.com/mastering-4-stages-of-malware-

analysis/.

[2] https://github.com/cuckoosandbox/cuckoo/releases/
tag/1.2.

[3] https://github.com/cuckoosandbox/cuckoo/releases/
tag/2.0-rc1.

[4] https://github.com/spender-sandbox/cuckoo-modifi ed.

[5] https://github.com/a0rtega/pafi sh.

[6] https://github.com/jbremer/vmcloak.

[7] https://github.com/buffer/thug.

[8] https://www.bro.org/.

[9] https://github.com/volatilityfoundation/volatility.

https://zeltser.com/mastering-4-stages-of-malware-analysis/
https://github.com/cuckoosandbox/cuckoo/releases/tag/1.2
https://github.com/cuckoosandbox/cuckoo/releases/tag/2.0-rc1
https://github.com/spender-sandbox/cuckoo-modified
https://github.com/a0rtega/pafish

