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 1. INTRODUCTION
Mobile operating systems support multiple communication 
methods between apps running on mobile devices. 
Unfortunately, these convenient inter-app communication 
mechanisms also make it possible to carry out harmful 
actions in a collaborative fashion. Two or more mobile apps, 
viewed independently, may not appear to be malicious. 
However, in combination they could become harmful by 
exchanging information with one another and by performing 
malicious activities together. In 2014, a collaborative project 
known as ACiD was set up (http://acidproject.org.uk), one 
of the aims of which was to investigate this potential threat. 
ACiD stands for ‘Application Collusion Detection’. Our main 
focus was Android OS, which we expected to be the primary 
target for attacks based on app collusion. 

Multi-app threats have been considered theoretically for 
some years, but with the help of tools developed as part of the 
ACiD project, we were able to discover multiple colluding 
apps in the wild [1, 2].

In an attempt to evade detection both by mobile security 
tools and by malware and privacy fi lters employed by app 
markets, attackers may try to leverage multiple apps with 
different capabilities and permissions to achieve their goals 
– for example, using an app with access to sensitive data 
to communicate with another app that has Internet access. 
This technique of app collusion is diffi cult to detect, as each 
app will appear benign to most tools, enabling attackers to 
penetrate a large number of devices for a long period of time 
before they are caught.

This paper aims to: 

• Provide a concise defi nition of mobile app collusion 

• Summarize the state of the art 
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• Dive into how mobile app collusion attacks are 
manifested 

• Describe what tools and methods (both automated and 
manual) malware researchers can employ in order to 
discover and prove the existence of such attacks on 
Android devices.

Defi nitions

During our initial analysis it became apparent that it is 
important to start with a set of good defi nitions. The reason 
is that inter-app communications are pretty common and 
take many forms – from benign to malicious. In most 
cases, communications are implemented by design and are 
documented and/or expected by the user. Occasionally, 
however, one app may use a vulnerability (a bug or a design 
fl aw) in another app to perform actions other than those that 
are declared via its permissions. Meanwhile, the darkest end 
of the ‘app spectrum’ may be populated with app pairs (or 
triplets, etc.) which are deliberately designed to communicate 
with each other in order to violate security and privacy.

Identifying the properties associated with such bad 
behaviours would allow tools to be targeted to discover these 
malevolent forms of inter-app communication. Of course, the 
aim would be to exclude, as much as possible, benign apps 
where communications are implemented deliberately for the 
benefi t of the user. 

For a given a set of Android applications which are known to 
communicate with each other, we have defi ned the following 
three app categories:

• Collaborating apps: these apps are benign, their 
communications are implemented by design, they are 
useful, documented, and/or visible to the user.

• Confused deputies: in these cases one app is exploiting 
a vulnerability or a design fl aw in another app in order to 
perform actions beyond its own declared capabilities.

• Colluding apps: these are sets of apps where inter-app 
communications are deliberately used for malicious 
purposes.

A scalable method for discovering and distinguishing these 
three app categories could be based on extracting features 
related to inter-app communications and employing machine-
learning methods. To this end, we discuss features that may 
help solve this classifi cation problem; we also investigate the 
nature and type of features that can be extracted automatically 
and discuss tools that can be used for feature extraction. For a 
number of apps we provide example values of the features.

For practical reasons, and because features separating 
malicious collusions and confused deputy scenarios are rather 
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limited, we focus on distinguishing collaborating apps from 
the two malicious categories.

The rest of the paper is organized as follows: in Section 2, 
we discuss two typical example sets of collaborating apps 
and colluding apps. In Section 3, we discuss a number of 
potential features that could help to distinguish between 
collaboration and collusion. For each of these features 
we discuss what it is, why it might be useful, how it can 
automatically be extracted, what values the feature yields for 
the example sets from Section 2, and fi nally, we give a brief 
evaluation of the feature (which, given the small size of the 
data set, can only be speculative). In Section 4, we describe 
various machine-learning approaches that could be applied. 
We conclude the paper with some remarks on the future of 
Android.

 2. EXAMPLES

 2.1. A collaborating app set

The Amazon Shopping app (com.amazon.mShop.android.shopping, 
version 14.2.0.100) collaborates with the Facebook app 
(com.facebook.katana, version 149.0.0.40.71) to allow users 
to share interesting items with others via Facebook. When a 
user fi nds an item that they wish to share with others, they 
can use the built-in Android share function. When activating 

this Android share facility, the menu that is presented changes 
depending on what apps are installed (see Figure 1). For 
instance, if the Facebook app is installed then one would be 
able to share the content with Facebook and create a new 
post. This is an example of collaboration that supports a 
user’s workfl ow. 

Note that the Amazon Shopping app documents this 
behaviour on Google Play and lists the following product 
feature: ‘Send and share links to products via email, SMS, 
Facebook, Twitter, and more.’ Note further that in this 
example we report on the existence of a collaboration but 
refrain from making any claim concerning the absence of a 
collusion between these two apps.

2. 2. A colluding app set

When working on the ACiD project, we discovered a group 
of apps that used collusion to synchronize the execution of a 
potentially harmful payload. This payload was embedded into 
all the apps through a library called MoPlus SDK. MoPlus 
is included in more than 5,000 Android installation packages 
(APKs). This library has been known to be malicious since 
November 2015 [3]. However, the collusion behaviour of the 
SDK was previously unknown. 

We found that apps that included the malicious version of 
the MoPlus SDK would talk to each other (when running 
on the same device) to check which of them had the highest 

Figure 1: Left: Sharing an item from the Amazon Shopping app without the Facebook app installed. Right: Sharing an item from 
the Amazon Shopping app with the Facebook app installed yields a new menu entry, allowing the user to post the item to their 

Facebook account.

ID Package Version MD5

C1 com.baidu.searchbox 6.0 062f91b3b1c900e2bc710166e6510654

C2 com.game.jewelsstar 1.6 00c7a61c7dababe41954879a8ec883dc

C3 com.baidu.browser.apps 5.6.4.0 0230e68490a88d2d4fc0184428ba2c07

C4 com.baidu.browser.apps 5.6.4.0 0658c01e2f28dff29bc40d57df6a0336

C5 com.appandetc.sexypuzzle 1.9.9.1 01a05de59d875077866dc3d81e889d9c

C6 com.baidu.appsearch 6.1.0 05260d6cc0a4d43e0346b368ddce8029

C7 com.baidu.appsearch 6.3.1 03f39e7de7ed90789b349d2a7a097d0b

C8 com.baidu.appsearch 6.4.0 0742c85c39c67c21c0b2fc9f33ab1232

Table 1: Set of colluding apps used for the experiments in this paper. C3 and C4 have the same package and version number, but 
differ in some of their content. 
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privileges. The app with the highest privileges would then be 
chosen to execute a local HTTP client to receive commands 
from an external C&C server, maximizing the effects of the 
malicious payload. MoPlus was using SharedPreferences and 
Intents for inter-app communication. (For a more detailed 
description of the colluding behaviour of these apps, please 
see [4].) 

For this paper we performed experiments on colluding app 
sets which carried the MoPlus SDK. Table 1 provides a 
summary of those apps, along with their package names and 
MD5 hashes for ease of identifi cation by other researchers. 

3. A SPECULATIVE APPROACH TO 
DISTINGUISH BETWEEN COLLUSION AND 
COLLABORATION
We investigate the hypothesis that a number of features 
related to inter-app communications can automatically 
be extracted from APKs and that, with the help of 
machine learning, they can be used to distinguish between 
collaboration and collusion.

It should be noted that our approach is necessarily a 
speculative one due to a lack of labelled data (in other words, 
app sets classifi ed as either benign or colluding maliciously) 
– there has been only one set of colluding apps identifi ed 
in the fi eld, and it is a challenge to provide many app sets 
exhibiting benefi cial collaboration (where ideally one would 
also know that these collaborating apps don’t collude).

To this end, we have identifi ed a number of potential static 
features for which we will examine:

• Why they might be useful in order to distinguish 
between collusion and collaboration

• Whether they can be extracted automatically using 
current tools

• Their nature.

Apart from simple features related to communications (e.g. 
sending and receiving intents) there are several less obvious 
features to consider:

1. Code obfuscation

2. Properties extracted from app documentation

3. Ability of an app to detect if other apps are installed

4. Permissions used vs permissions requested

5. Code similarity.

For each of these features we will extract sample data from 
the collaborating and colluding app sets described in Section 
2. Having examined the feature, we will discuss how suitable 
it appears for our purpose. Criteria include the possibility 
of automatic extraction and fi rst indications based on our 
examples. 

Additionally, we have considered the feature:

6. User interaction.

Though this might be quite a useful feature, due to a 
lack of corresponding tools, it is not possible to extract it 
automatically. We shall discuss in detail why this feature 
(currently) is not applicable.

Finally, we explore dynamic features.

 3.1. Code obfuscation 

What it is: Code obfuscation refers to code transformations 
that hide code functionality (fully) from human readers, 
e.g. for the purpose of intellectual property protection, or 
for disabling automatic functionality detectors, e.g. code 
analysers. A survey of code obfuscation techniques and 
obfuscation tools is presented in [5].

Why it might be a useful feature: [6] reports on methods to 
identify the presence of obfuscations via various obfuscators, 
such as Bangcle and ProGuard, while evaluating the 
likelihood of the presence of malware when these tools have 
been used. According to [6], Bangcle indicates an elevated 
risk of malware presence while ProGuard appears to be 
used in a more legitimate fashion, for protecting intellectual 
property.

We propose to use automatic obfuscation evaluation (AOE) 
to determine: (1) whether an app has been obfuscated, (2) 
which obfuscator(s) were used, and (3) which obfuscation 
techniques were applied. Further, to provide ‘obfuscation 
collusion risk for a set of apps’, denoted as OCR(S), we 
aggregate all the individual AOEs of the apps in the set S. 
Then we use OCR(S) to discriminate between collusion 
and collaboration, where sets below a certain threshold of 
OCR(S) would be considered ‘low risk’. Next, we explain 
how AOE works at each step (1-3):

1. If an app is obfuscated, a dedicated tool can provide 
the degree of obfuscation, OD, which effectively 
obstructs malware analysis tools. 

2. According to [6], identifying the obfuscator(s) used to 
hide the app code helps discriminate collusion from 
collaboration based on a credibility factor associated 
with an obfuscator. Consequently, we assume that the 
malware production risk (MPR) associated with an 
obfuscator is proportional to AOE.

3. Some obfuscation techniques are known to hide the 
code completely, e.g. (partial) server-side execution 
may load code from a remote resource. We use the 
code-hiding degree, HD, combined with OD to defi ne 
an app’s obfuscation risk evaluation (Oth-RE) as 
proportional to HD and OD. 

Finally, the value AOE for an app is defi ned as the product of 
MPR and Oth-RE.
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Automated extraction of this feature: A recent tool, which 
we refer to here as TOD, described in [7], uses machine 
learning to identify the obfuscator of an Android app for 
a given set of obfuscation tools and for a number of their 
confi guration options. This appears to be the fi rst and only 
work to automatize the obfuscation identifi cation problem. 
Technically, the authors of [7] identify a feature vector that 
represents a characteristic of the obfuscated code. TOD 
extracts this feature vector from the Dalvik bytecode and uses 
it to identify the obfuscator provenance information. 

TOD focuses on obfuscations at the level of class, fi eld and 
method names, as well as evaluating the package structure 
after removing unused code. Based on these parameters, the 
tool learns the different patterns of obfuscations available 
for obfuscators from a given training set. Currently, the 
training set focuses on learning obfuscation patterns for 
fi ve obfuscators: ProGuard [8], Allatori [9], DashO [10], 
Legu [11] and Bangcle [12]. Experiments indicate that TOD 
identifi es the obfuscator with 97% accuracy and recognizes 
the obfuscator’s confi guration with more than 90% accuracy. 
Based on [6], we associate ProGuard with low MPR while 
Bangcle gets a high MPR value.

Feature extraction from the running examples: Table 2 
presents the evaluation results produced by TOD for the apps 
described in Section 2. We would like to thank the authors 
of [7] for providing us with these results. TOD produces a 
safe result in that, when a known obfuscator is detected as 
having been applied to an app, that obfuscator is reported as 
the result; in other cases, the reported result is ‘Not known’, 
which means that either an unknown obfuscator was used 
or no obfuscation was detected. Admittedly, the results in 
Table 2 do not help in distinguishing between collusion and 
collaboration solely via MPR for this example set. Note also 
that, for the moment, we do not provide an AOE aggregation 
formula for OCR(S).

Evaluation of the feature: Using a similar approach to the 
one employed in [6] for obfuscation tools and including risk 
evaluation for obfuscation techniques (e.g. techniques that 

make static analysis impractical) should assist in collusion/
collaboration differentiation, via Oth-RE. However, currently, 
the TOD tool does not include detection of obfuscation 
techniques and the results for our example set do not show 
obvious differentiations.

 3.2. Properties extracted from app documentation

What it is: It is clear that it should be possible to inspect app 
documentation and classify/cluster apps according to their 
described behaviour (e.g. game apps, weather apps, etc.). The 
Google Play app ranking algorithm is a good example of this 
approach. It utilizes app metadata such as title, description 
and reviews in order to rank user search results based on their 
relevance to user queries. 

Why it might be a useful feature: We speculate that app 
descriptions can be utilized to distinguish between colluding 
and collaborating apps, subject to the assumption that benign 
collaborative behaviours (if any) will be documented in the app 
description and that behaviours that are invisible to the user are 
‘suspicious’. For example, for an app/app pair belonging to a 
certain class of apps, say gaming apps, there might be a certain 
expectation as to which resources (i.e. permissions) it might 
need. In other words, the described behaviour (as found in the 
app descriptions on, e.g. Google Play) should comply with the 
resources requested by an app/app pair, and any discrepancy 
between the described behaviour and requested resources 
warrants further investigation either in the context of collusion 
or as an individual malicious app. So, we need to analyse the 
app descriptions automatically to extract three features: (a) 
the category of the app, (b) resources that it wants to use, and 
(c) collaboration with other apps, as in the example shown in 
Table 3.

Automated extraction of this feature: Using the app 
description, features (a), (b) and (c) can be extracted as 
follows: we create a sample corpus of app descriptions for 
each app category in the Google Play app store (see Table 4). 
A corpus is a structure for storing text documents of app 
descriptions with their metadata. After that we do some basic 

 Application Obfuscator : AOE
C1 com.baidu.searchbox ProGuard : LOW x Oth-RE
C2 com.game.jewelsstar Not known : Oth-RE
C3 com.baidu.browser.apps Not known : Oth-RE
C4 com.baidu.browser.apps Not known : Oth-RE
C5 com.appandetc.sexypuzzle ProGuard : Low x Oth-RE
C6 com.baidu.appsearch ProGuard : Low x Oth-RE
C7 com.baidu.appsearch Not known : Oth-RE
C8 com.baidu.appsearch Not known : Oth-RE
A1,2,3 Amazon XYZ.apk Not known : Oth-RE
F Facebook_v149.0.0.40.7…om.apk ProGuard : Low x Oth-RE

Table 2: Detection of obfuscation tool using TOD. 
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text preprocessing on our corpus – for example, removing 
extra white spaces and document words, ignoring extremely 
rare words and very common words, etc. Then we create the 
fundamental object for our text analysis called the Document 
Term Matrix (DTM). DTM is a matrix that describes the 
frequency of each term in each document in our corpus 
arranged in rows (app names) and columns (terms in the 
descriptions). If a term occurs in a particular app description 
n times, then the matrix entry corresponding to that row and 
column is n, otherwise 0. Finally, based on DTM, we can 
build our classifi er to classify a given new app description in 
a known category, as DTM serves as a feature vector for this 
purpose. In order to extract (b) and (c) above, it’s possible 
to employ a simple regular expression search on the app 
description text.

Feature extraction of the running examples: In order to 
compute discrepancies between described behaviour (i.e. 
app category) and requested resources shown in Table 3, we 
need a list of all permissions that are typically associated 
with each app category type in Table 4. For example, weather 
applications generally request the following resources 
(permissions): approximate location, precise location, view 
Wi-Fi connections, view network connections, full network 
access, control Near Field Communication, etc. Likewise, 
we can compute a ‘norm’ resources set for each category 
using a statistically signifi cant sized sample set. Finally, for 
any given pair of apps, we can compute the distance between 
requested resources (Table 3) and the ‘norm’ resources set 
for that app category using a DTM. If this distance exceeds 
a certain threshold then the target app/app pair is suspicious 
and warrants further investigation.

We implemented the above analysis using R – a language 
designed for statistical computing. It is possible to automate 
the entire analysis with the help of web-crawling tools (e.g. 

SEO Spider, Selenium) and machine-learning tools (e.g. R, 
Python).

Evaluation of the feature: As shown in Table 3, MoPlus 
apps have not documented their association with other apps 
in their app descriptions. However, Amazon has documented 
its cooperation with the Facebook and Twitter apps. From 
the machine-learning perspective, it’s true that a few counter 
examples are insuffi cient to draw a generalized conclusion, 
but this observation provides us with reasonable grounds to 
speculate that this kind of analysis could become a useful 
feature and that it would be worthwhile investigating further.

 3.3. Ability of an app to detect if other apps are 
installed

What it is: The Android operating system offers a wide range 
of communication options that enable apps to cooperate and 
share information. Additionally, Android allows apps, when 
the necessary permissions are requested, to check if other 
apps are installed. This feature could be used by collaborating 
apps to adapt their interface and functionality to the apps 
available on the execution device, but it could also be used to 
coordinate a collusion attack. 

Why it might be a useful feature: Colluding apps can 
execute their actions without checking if their collusion 
counterparts are installed and currently running. However, 
for attackers this approach has several drawbacks. Firstly, 
the attack may not be successful if the second app is required 
but is inactive. Secondly, the malicious payload may create 
visible indicators (system calls, logs, fi les, etc.), which would 
simplify discovery of the collusion even when a single app is 
analysed. So we expect most colluding apps to include a step 
to detect if their colluding ‘buddies’ are installed and active 
on the victim’s device. 

App 
name

Category Requested resources Documented 
collaboration

A1 Shopping Find accounts on the device, add or remove accounts, read your contacts, 
approximate location, ...

Facebook, 
Twitter

F Social Retrieve running apps, fi nd accounts on the device, add or remove 
accounts, read your own contact card, ...

None

C3 Communication Approximate location, precise location, ... None

C6 Tools Find accounts on the device, read the contents of your USB storage, ... None

Table 3: Feature extraction (due to space constraints only part of the table is presented).

Category Examples

Art & design Sketchbooks, painter tools, art & design tools, colouring books

Books & reference Book readers, reference books, textbooks, dictionaries, thesaurus, wikis

Shopping Online shopping, auctions, coupons, price comparison, shopping lists, product reviews

Table 4: Possible app categories in the Google Play app store [13] (due to space constraints only part of the table is presented).
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Automated extraction of this feature: App developers 
have access to several API calls and commands to detect 
the presence of other apps in the system. These can be 
detected by static analysis tools such as Androguard [14].The 
following list summarizes the indicators which could be used:

• M1: The Android ActivityManager and PackageManager 
classes offer information about opened and installed 
apps. Apps using these classes to get information about 
the running processes on the system must request the 
GET_TASKS permission.

• M2: The list of running processes can be accessed 
through a shell command. Android allows apps to 
execute shell commands through the Runtime class. For 
instance, the list of running processes could be obtained 
by executing the Linux ‘ps’ command via 
Runtime.getRuntime().exec(‘ps aux’), which returns a 
Process object.

• M3: A colluding app could create a lock fi le or variable 
inside any of the Android shared resources such as 
Shared Preferences, the external storage or the Internet. 
Access to the external storage requires the READ_
EXTERNAL_STORAGE and WRITE_ EXTERNAL_
STORAGE permissions. Access to the Internet requires 
the INTERNET permission.

• M4: Colluding apps can register an IntentFilter to 
answer specifi c broadcast intents from other colluding 
apps. Other apps can check if an IntentFilter is 
registered by other Broadcast receivers through the 
PackageManager API. The queryBroadcastReceivers 
method returns those BroadcastReceiver objects that 
have registered to answer a specifi c Intent. In a similar 
way, this class also offers the queryIntentActivities 
method, which returns the Activity objects that would 
answer a specifi c Intent.

These APIs allow apps to verify if another app is installed but 
do not necessarily indicate the existence of colluding apps. 
However, since we expect colluding apps to check if their 
‘buddies’ are installed on the same device, we consider this 
feature to be indicative of collusion.

Feature extraction of the running examples: In fact, one of 
these indicators was present in a documented fi eld collusion 
case [4]. In this case, colluding apps checked if a specifi c 
BroadcastReceiver was installed to see if the other colluding 
apps were installed and running on the victim’s device (M4). 

Table 5 compares the MoPlus SDK (all apps which include 
malicious versions of this SDK are known to collude [3]) 
with the Amazon and Facebook apps. For each detection 
possibility, we show (with a check mark, ‘’) which sets of 
apps have the indicators in at least one of the apps. In the 
case of MoPlus apps, we have analysed classes belonging to 
the MoPlus SDK, not the whole binary fi le. 

Evaluation of the feature: While extraction of this feature 
is not very hard, the results show no signifi cant difference 
between benign and malicious app sets. Collaborating apps 
may also check if other apps are present in order to improve 
user experience.

 3.4. Permissions used vs permissions requested

What it is: In this section, we show that permissions analysis 
based on manifest fi les can provide a useful insight when 
differentiating between collusion and collaboration.

Why it might be a useful feature: Intuitively, honest 
programmers will always be transparent about the permissions 
that are used in their applications. Conversely, malicious 
programmers are likely to request many permissions in 
order to obtain more privileges, or to hide the use of critical 
permissions in the manifest fi les of their applications. In this 
section, we will examine whether analysing permissions is 
useful to differentiate between the two. In particular, we will 
look at ratios between used and declared permissions and at the 
number of permissions used without being declared.

Automated extraction of this feature: We used Permission 
Checker7 [15], a permissions analysis tool for APK fi les, 
to extract the requested permissions from the manifest 
fi le within an APK and the permissions used by method 
invocations in the APK’s bytecode. To this end, Android 
permissions (AP) are categorized into four different groups:

• Declared permissions (DAP): APs declared in the 
Android manifest fi le.

• Used permissions (EAP): APs declared and used in the 
bytecode.

• Ghost permissions (GAP): APs used but not declared.

• Useless permissions (UAP): APs declared but not used. 

Given an application, A, DAP
A
 denotes the set of declared 

permissions for A, and EAP
A
 the set of used permissions. For 

each pair of applications (A,B), we are interested in the ratio 
of used vs declared APs, defi ned as:

R
A,B 

= | EAP
A
  EAP

B
 | / | DAP

A
  DAP

B
 | [0,1]

and the number of undeclared permissions:

U
A,B 

= | GAP
A 
GAP

B
 | N

7 The results of this tool should be interpreted with a little caution: 
on applying it to apps we had written ourselves, the results were not 
completely accurate. 

M1 M2 M3 M4

MoPlus (colluding)  

Amazon/Facebook (collaborating)   

Table 5: Comparison of the MoPlus SDK with Amazon and 
Facebook apps.
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Feature extraction of the running examples: We 
apply Permission Checker and compute R and U fi rst 
for the collaboration set containing Facebook and 
Amazon applications. They are: (A1) Amazon Shopping 
(version 14.2.0.100), (A2) Amazon Prime Video (version 
3.0.213.147041), (A3) Amazon Underground (version 
8.0.0.200), and (F) Facebook (version 149.0.0.40.71). The 
results are shown in Table 6.

R
A,B

A1 A2 A3 U
A,B

A1 A2 A3

F 0.10 0.18 0.14 F 0 0 0

Table 6: Pair analysis of Amazon and Facebook applications.

The same analysis is applied to the colluding set of MoPlus 
applications. The results are shown in Table 7.

For benign apps, Table 6 shows that the R
A,B

 ratio varies from 
0.14 to 0.18, while the number of undeclared permissions, 
U

A,B
, is 0. Table 7 shows that, for colluding pairs of MoPlus 

applications, the R
A,B

 ratio ranges between 0.17 and 0.29, 
while undeclared U

A,B
 can go up to 2.

Evaluation of the feature: We demonstrated that this feature 
can be extracted automatically. Overall, our evaluation 
supports the conjecture that R

A,B
 values are smaller for 

collaboration than for collusion. Therefore, they can be useful 
features to differentiate between collaboration and collusion.

 3.5. Code similarity 

What it is: Identifying code similarities serves many 
purposes which include studying code evolution, detecting 
source code plagiarism, enabling refactoring, and performing 
defect tracking and repair. 

Why it might be a useful feature: All maliciously colluding 
apps ought to operate together, so they are likely to be 
coded by the same person (or team) and during the same 
time frame. This makes it more than likely that they would 
have identical development environments, share signifi cant 
portions of source code, use the same libraries, and perhaps 

even share a coding style and include the same programmer’s 
errors. Therefore code similarity metrics should be strong and 
useful features.

Automated extraction of this feature: Many tools are freely 
available to detect and measure code similarity. They are 
based on different techniques, ranging from lightweight 
line- and token-based syntactic approaches to heavyweight 
semantics-based approaches. For example, a lightweight tool 
like Simian (Similarity Analyser) identifi es code similarities 
based on syntactic techniques, but does not quantify the 
degree of similarity that exists between potential clones – 
but a user can defi ne a similarity score based on its output, 
as shown later in this section. Moreover, a tool like Moss 
emphasizes the semantic similarities of programs using the 
‘winnowing algorithm’ [16] to selected fragments of source 
code to be fi ngerprinted, and then calculates a similarity 
percentage based on the set of common fi ngerprints.

Feature extraction of the running examples: In order to 
demonstrate the feasibility of proposed feature extraction, we 
downloaded an APK from the Google Play Store along with 
its source code [17]. Using JADX [18] – a tool for creating 
Java source code from Android DEX and APK fi les – Java 
source code was produced for the APK. Then Simian [19] was 
employed to calculate similarities between the original source 
code and the re-engineered source code. Simian reported 12 
similar lines out of 176 line comparisons in this analysis, 
which resulted in a 12/176 = 0.07 similarity score. Though 
we compared the original source code of the app against its 
re-engineered code, the similarity score obtained here was 
very low. This is probably due to the fact that Simian performs 
only syntactic pattern matching rather than functional/semantic 
matchings. One can never get back to the exact same source 
since there is no metadata with the compiled code. Therefore, 
re-engineered code may be syntactically different from its 
original source code and a low similarity score via syntactic 
pattern matching should be expected.

Evaluation of the feature: Table 8 presents the code 
similarity scores automatically computed for the set of 

R
A,B

/U
A,B

C1 C2 C3 C4 C5 C6 C7 C8

C1 N/A 0.28/1 0.19/1 0.19/1 0.21/1 0.27/0 0.19/0 0.19/0

C2 0.28/1 N/A 0.20/0 0.20/0 0.28/2 0.29/0 0.20/0 0.19/0

C3 0.19/1 0.20/0 N/A 0.19/0 0.18/1 0.23/0 0.17/0 0.17/0

C4 0.19/1 0.20/0 0.19/0 N/A 0.18/1 0.23/0 0.17/0 0.17/0

C5 0.21/1 0.28/2 0.18/1 0.18/1 N/A 0.24/0 0.18/0 0.17/0

C6 0.27/0 0.29/0 0.23/0 0.23/0 0.24/0 N/A 0.19/0 0.18/0

C7 0.19/0 0.20/0 0.17/0 0.17/0 0.18/0 0.19/0 N/A 0.18/0

C8 0.19/0 0.19/0 0.17/0 0.17/0 0.17/0 0.18/0 0.18/0 N/A

Table 7: Pair analysis of MoPlus applications on R
A,B

 and U
A,B

.
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MoPlus apps. The score for the Facebook-Amazon app pair 
is 0.26 and there is no clear distinction from the MoPlus 
app values. However, the sample size is not statistically 
signifi cant so we cannot draw any conclusion here. As 
mentioned above, getting back to the exact same source code 
is diffi cult, and re-engineered code is syntactically different 
from its original source code. This might have a negative 
effect on the usefulness of this feature in practice.

C1 C2 C3 C4 C5 C6 C7 C8

C1 N/A 0.081 0.081 0.174 0.088 0.118 0.109 0.131

C2 0.081 N/A 0.01 0.01 0.028 0.012 0.016 0.013

C3 0.081 0.01 N/A 1 0.008 0.062 0.061 0.073

C4 0.174 0.01 1 N/A 0.008 0.062 0.061 0.073

C5 0.088 0.028 0.008 0.008 N/A 0.009 0.014 0.01

C6 0.118 0.012 0.062 0.062 0.009 N/A 0.883 0.764

C7 0.109 0.016 0.061 0.061 0.014 0.883 N/A 0.647

C8 0.131 0.013 0.073 0.073 0.01 0.764 0.647 N/A

Table 8: Similarity scores (pairwise) for MoPlus 
applications.

 3.6. User interaction

What it is: This feature is defi ned based on the apps’ 
interaction with the user and it aims to predict malicious 
behaviour based on measuring the honesty of an app’s 
communication with the user. We propose to evaluate the 
quality and quantity of the messages/images used by an app 
for user interaction.

Why it might be a useful feature: If an app shows a standard 
Android ‘Share’ icon, then it is likely that corresponding 
communications with other apps would be benign. Even 
better would be if there was a message that explained what 
is shared and why. However, producing good user interaction 
(UI) evaluators is a challenging task. In our view, the 
evaluation of the interaction needs to focus on the content 
of the UI. For example, a long, detailed message (which is 
easier to evaluate) explaining a button requesting access to a 
particular resource would work well for more mature users. 
If, however, the same long text is presented to a child, then 
it might not be quite as effective: due to different perception 
capabilities, there are different classes of users. Optimally, we 
would want to use a UI analysis tool capable of combining 
analysis of the text and the complexity of the UI elements to 
produce a collusion risk evaluation. Moreover, a combination 
of such UI analysis with API mapping could be used to 
decide whether a certain UI element, such as a button, 
should allow a specifi c API call. We foresee this analysis as 
being rather useful when looking for collusion, but there is a 
challenge in fi nding suitable tools.

Automated extraction of this feature: At the moment, there 
are several tools capable of testing user interaction in Android 
apps, for example Monkey Runner [20] and Espresso Testing 
Framework [21]. Monkey Runner allows apps to be installed 
and tested by generating stimuli so that an app does things as 
if a user were interacting with it. The tool basically acts as a 
software robot, which produces a sequence of touch events 
that, when sent to an emulator or device, interacts as a human 
would. Coupling this with a dynamic analysis tool would allow 
us to inspect which UI elements trigger communication APIs. 

The Espresso Testing Framework is included within Android 
and allows the execution of UI tests. Instead of generating 
touch events, this framework accesses the interface elements 
of the screen directly. This approach would prove useful for 
extracting the interface elements of apps for evaluating their 
quality, eventually by means of a wrapper. 

Feature extraction of the running examples: We were 
not able to fi nd a tool that suits our aims for UI collusion 
risk evaluation. As mentioned, the available UI tools target 
slightly different usage scenarios. This makes automated 
feature extraction cumbersome. 

Evaluation of the feature: The UI collusion risk evaluation 
could be executed via a combination of techniques involving 
data mining, text evaluation and image processing. We still 
believe that UI interaction has potential in distinguishing 
malicious behaviour.

 3.7. Dynamic features

In the previous sections, we discussed many features which 
would assist in discovering colluding apps and which can 
be extracted statically. The feature set may be improved 
further by adding dynamic features, extracted at runtime. In 
many cases dynamic tools would also be helpful to improve 
extraction of static features – for example when static 
analysis tools fail to detect and extract the features due to 
code obfuscation or due to the code using refl ection.

One approach to facilitate dynamic analysis is to put 
wrappers around apps in order to log their actions – for 
example, a wrapper might log accesses to restricted resources 
and external communications. One such tool is APIMonitor 
from the team that developed Droidbox [22]. To extract 
the runtime features of an app one would need to apply the 
wrapper to that app, execute it, and then analyse the logs 
generated by APIMonitor. 

Another approach is to create a special instrumented version 
of Android, populate it with multiple apps, and record the 
actions. There are existing research tools based on this 
approach, for example CopperDroid [23], which is focused 
on dynamic analysis of apps. CopperDroid, however, is 
currently only capable of monitoring a single app, although 
it may be extended to execute multiple apps and extract 
features related to access to sensitive resources and inter-app 
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communications. Unfortunately, using dynamic feature 
extractors was well beyond the scope of our project.

 4. MACHINE LEARNING

Having explored a number of features, we will now discuss 
how one could potentially use them to train a model 
with a machine-learning approach in order to distinguish 
automatically between app collaboration and collusion.

In general, it is the quality of the input data that determines 
the output quality of machine-learning algorithms. Hence, 
after exploring a potential feature set, it is necessary to 
perform data exploration (including feature engineering), 
cleaning and preparation before initiating modelling and 
evaluation. This will help us to systematically identify 
important features among the feature set that actually inform 
our modelling. Unfortunately, the sizes of the app sample sets 
(both colluding and collaborative) employed in this paper 
were not suffi cient for this purpose. 

Learning algorithms are chosen based on the given input 
data and the learning task at hand. For example, if labelled 
data is provided and the learning task is ‘classifi cation’, 
then we can apply a supervised learning algorithm, e.g. 
support vector machine (SVM) [24], to the problem. In 
the collusion context, classifi cation refers, for example, to 
automatically labelling a previously unseen app pair as either 
colluding or collaborating. However, applying a supervised 
algorithm to our problem would be diffi cult due to the lack 
of known collaborating and known colluding app samples 
that are available in the wild. As in many other security 
problems, this represents a major constraint in applying 
supervised learning techniques. However, it is still possible 
to apply unsupervised, semi-supervised or novelty (anomaly) 
detection techniques [25, 26] to this problem.

In unsupervised learning, we only need the input data of 
the features, no corresponding output labels are required. The 
goal here is to model the underlying structure or distribution 
of the data in order to learn more about the dataset. 
Algorithms are left on their own to discover and present 
interesting structures rather than training them using labelled 
data. Our problem can be modelled as a clustering (e.g. 
k-means) or association (e.g. AprioriDP) rule problem [25]. 
Clustering discovers the inherent groupings in our dataset 
while association discovers interesting relationships between 
elements of the input data. The underlying assumption here 
would be that colluding and collaborating apps have different 
distributions in terms of the above features and therefore 
should form disjoint groups that correspond to colluding and 
collaborating app sets.

As shown in the literature [27], app collusion is a real threat. 
But as far as anyone knows, the base rate of colluding apps 
in the wild is close to zero. In this situation, approaching 

the issue as a semi-supervised learning problem would 
be sensible. Many real-world security problems (e.g. credit 
card/toll fraud detection) fall into this category, in which 
only some events are labelled as benign/malicious and 
the majority are unlabelled [28]. This is because it can be 
expensive to label data, as domain experts are required. 
Unlabelled data is typically cheap and easy to collect and 
store. In this case unsupervised learning algorithms can be 
employed to discover and learn structures within the input 
variables, and then supervised learning (e.g. SVM, KNN) 
[25] can be applied to make best-guess predictions for the 
unlabelled data. After that, the data can feed into a supervised 
learning algorithm for training purposes and the model can be 
used to make predictions on new, unseen app pairs as they are 
colluding and collaborating.

Alternatively, it might be possible to obtain a considerable 
amount of data representing the benign class (i.e. non-
colluding), whilst not having suffi cient and reliable data 
representing the malicious class (i.e. colluding). This would 
hinder training and, in particular, the testing procedures of 
whatever algorithms are chosen to solve this problem. In order 
to minimize this diffi culty, we propose a one-class modelling 
approach (including novelty/anomaly detection) [29] to move 
forward in such a context. The idea here would be fi rst to train 
a model using only benign samples. This trained model could 
then be used for the identifi cation of new/unknown data (that 
the model had not been trained with) with the help of either 
statistical or machine-learning based approaches. To achieve 
this, spot-checking the one-class support vector machine would 
be the fi rst step.

Note that none of the above learning algorithms needs to 
be built from scratch. Many useful libraries of extensible 
algorithms are freely available in R, Python, and also ML 
libraries in other programming languages. These can be 
extended and adapted for this purpose.

 5. FUTURE OF ANDROID
Malicious collusion became possible in Android due to a 
series of unfortunate design decisions. Future versions of 
Android (or any OS that succeeds it) must have a better 
defi ned and more regulated communication framework in 
general. We strongly advocate the following changes: 

Firstly, we believe that the OS should require an explicit 
declaration of all app communication methods in the app 
manifest. At the moment this is done with the exported 
property for Services and BroadcastReceivers, but the 
operating system does not even make them visible to the user. 
If app developers were required to make explicit declarations 
then all inter-app communications would be visible to 
users and analysis tools would be able to inspect them. 
This approach would also underpin more granular policies 
(in Google Play as well as in the OS at runtime) around 
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communications. Similarly, it would be very desirable to have 
a declaration in the manifest of all the Internet domains and 
URLs that an app is allowed to contact. That would provide 
a much better and more granular control than the very broad 
INTERNET permission. It would also allow analysis of 
communications which occur outside of the device, where 
an external website is operating as an intermediary between 
two apps on the same device. This step would signifi cantly 
reduce the risk of privacy intrusions from advertisement 
libraries embedded in apps and would allow better methods 
for checking the privacy status of apps.

Secondly, we propose allowing apps to interact while 
enabling them also to evaluate the interaction with other 
apps. The evaluation protocol would be pre-set and intended 
to give each app a certain authority level in evaluating the 
quality of the interaction with its peers. The protocol could 
be provided via a wrapper that each application is either 
allowed or required to use in certain Android environments. 
This approach would enable post-mortem analysis methods 
for evaluating apps based on their behaviour in interaction 
with their peers. The main question that our future research 
would, in this case, need to answer is: which basic set of 
rules should the peer evaluation system provide? This basic 
set of rules would be crucial for allowing discrimination 
between collusion and collaboration. An approach that 
implements this to some extent is Android Work [30], which 
introduces a further sandboxing that separates personal apps 
from professional ones: the mobile device management 
administrator decides which apps go into the professional 
sandbox, and the user is able to install apps on the personal 
sandbox. Apps from the two different sandboxes are not 
allowed to interact and they can be switched on and off by 
category. This would mean implementing OS support for app 
group isolation – similar, for example, to Samsung Knox.

Both of our proposals would have to include a regulatory 
phase and an evaluatory/analysis mechanism. In the 
regulatory phase a set of rules should be provided either by 
Android OS, e.g. the fi ner-grained communication intents 
declaration suggested in the fi rst proposal, or by Android 
wrappers, e.g. the set of standards in app evaluation of 
peer communication. The evaluatory phase uses the set of 
rules introduced in the regulatory phase to analyse apps 
and discover properties like collusion. For example, the 
fi rst proposal aims for traditional analysers to benefi t from 
additional information in order to produce more accurate 
results. Meanwhile, the second proposal relies on the 
post-mortem evaluatory phase that focuses on apps’ feedback 
based on communications to evaluate collusion risk. 

Coupling of the regulatory and evaluatory phases aligns 
the research desideratum of our current work with today’s 
trend of regulating and verifying AI. Namely, with recent AI 
developments, it has become obvious that technology may go 
out of control and may produce unexpected problems. Take, 

for example, the case of the Facebook AI business agent-
to-agent negotiation project [31] that used natural language 
and produced unexpectedly effi cient results. The conclusion 
of the project was that AI may be able to surpass intuitive 
strategies when trained well enough. Consequently, the 
scientifi c community is currently organizing itself to evaluate 
the status and progress of AI, and to propose an (initial) set 
of measures for controlling the direction of its development 
[32]. 

Moreover, we envisage seeing the usage of AI/machine-
learning methods in app code. Hence, early security measures 
must be provided in the form of more (self) regulation 
and safer activity of apps in Android and other mobile/IoT 
operating systems.

 6. CONCLUSION
There cannot be collusion in a single app, there has to be a set 
(a pair/triplet/quadruplet, etc.). Having in mind a high number 
of Android apps and an almost infi nite number of app sets, 
it soon becomes clear that only only automated methods are 
appropriate for discovering collusions and for distinguishing 
between benign cooperation and malicious activities.

We have described and evaluated a set of carefully selected 
features (based on common sense as well as on expert 
opinions). We have shown that machine learning is a 
promising approach to distinguish between colluding and 
collaborating apps. Many of the proposed features could form 
a solid basis for detecting malicious app sets in the Android 
universe. In some cases we have identifi ed technological gaps 
where tools are missing or require more work before they can 
be applied to the problem at hand.

The ultimate solution, however, is to implement changes in 
the OS – that would discourage abuse and allow much easier, 
automated discovery when it happens.
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