
VIRUS BULLETIN www.virusbulletin.com

1MARCH 2018

Covering the
global threat landscape

 DISTINGUISHING BETWEEN
MALICIOUS APP COLLUSION AND
BENIGN APP COLLABORATION: A
MACHINE-LEARNING APPROACH
Irina Mariuca Asavoae1, Jorge Blasco2, Thomas M.
Chen3, Harsha Kumara Kalutarage4, Igor Muttik5,
Hoang Nga Nguyen6, Liam O’Reilly1, Markus
Roggenbach1, Siraj Ahmed Shaikh6

 1. INTRODUCTION
Mobile operating systems support multiple communication
methods between apps running on mobile devices.
Unfortunately, these convenient inter-app communication
mechanisms also make it possible to carry out harmful
actions in a collaborative fashion. Two or more mobile apps,
viewed independently, may not appear to be malicious.
However, in combination they could become harmful by
exchanging information with one another and by performing
malicious activities together. In 2014, a collaborative project
known as ACiD was set up (http://acidproject.org.uk), one
of the aims of which was to investigate this potential threat.
ACiD stands for ‘Application Collusion Detection’. Our main
focus was Android OS, which we expected to be the primary
target for attacks based on app collusion.

Multi-app threats have been considered theoretically for
some years, but with the help of tools developed as part of the
ACiD project, we were able to discover multiple colluding
apps in the wild [1, 2].

In an attempt to evade detection both by mobile security
tools and by malware and privacy fi lters employed by app
markets, attackers may try to leverage multiple apps with
different capabilities and permissions to achieve their goals
– for example, using an app with access to sensitive data
to communicate with another app that has Internet access.
This technique of app collusion is diffi cult to detect, as each
app will appear benign to most tools, enabling attackers to
penetrate a large number of devices for a long period of time
before they are caught.

This paper aims to:

• Provide a concise defi nition of mobile app collusion

• Summarize the state of the art

1 Swansea University, UK
2 Royal Holloway, University of London, UK
3 City University London, UK
4 Queen’s University Belfast, UK
5 Cyber Curio, UK
6 Coventry University, UK

• Dive into how mobile app collusion attacks are
manifested

• Describe what tools and methods (both automated and
manual) malware researchers can employ in order to
discover and prove the existence of such attacks on
Android devices.

Defi nitions

During our initial analysis it became apparent that it is
important to start with a set of good defi nitions. The reason
is that inter-app communications are pretty common and
take many forms – from benign to malicious. In most
cases, communications are implemented by design and are
documented and/or expected by the user. Occasionally,
however, one app may use a vulnerability (a bug or a design
fl aw) in another app to perform actions other than those that
are declared via its permissions. Meanwhile, the darkest end
of the ‘app spectrum’ may be populated with app pairs (or
triplets, etc.) which are deliberately designed to communicate
with each other in order to violate security and privacy.

Identifying the properties associated with such bad
behaviours would allow tools to be targeted to discover these
malevolent forms of inter-app communication. Of course, the
aim would be to exclude, as much as possible, benign apps
where communications are implemented deliberately for the
benefi t of the user.

For a given a set of Android applications which are known to
communicate with each other, we have defi ned the following
three app categories:

• Collaborating apps: these apps are benign, their
communications are implemented by design, they are
useful, documented, and/or visible to the user.

• Confused deputies: in these cases one app is exploiting
a vulnerability or a design fl aw in another app in order to
perform actions beyond its own declared capabilities.

• Colluding apps: these are sets of apps where inter-app
communications are deliberately used for malicious
purposes.

A scalable method for discovering and distinguishing these
three app categories could be based on extracting features
related to inter-app communications and employing machine-
learning methods. To this end, we discuss features that may
help solve this classifi cation problem; we also investigate the
nature and type of features that can be extracted automatically
and discuss tools that can be used for feature extraction. For a
number of apps we provide example values of the features.

For practical reasons, and because features separating
malicious collusions and confused deputy scenarios are rather

VIRUS BULLETIN www.virusbulletin.com

MARCH 20182

limited, we focus on distinguishing collaborating apps from
the two malicious categories.

The rest of the paper is organized as follows: in Section 2,
we discuss two typical example sets of collaborating apps
and colluding apps. In Section 3, we discuss a number of
potential features that could help to distinguish between
collaboration and collusion. For each of these features
we discuss what it is, why it might be useful, how it can
automatically be extracted, what values the feature yields for
the example sets from Section 2, and fi nally, we give a brief
evaluation of the feature (which, given the small size of the
data set, can only be speculative). In Section 4, we describe
various machine-learning approaches that could be applied.
We conclude the paper with some remarks on the future of
Android.

 2. EXAMPLES

 2.1. A collaborating app set

The Amazon Shopping app (com.amazon.mShop.android.shopping,
version 14.2.0.100) collaborates with the Facebook app
(com.facebook.katana, version 149.0.0.40.71) to allow users
to share interesting items with others via Facebook. When a
user fi nds an item that they wish to share with others, they
can use the built-in Android share function. When activating

this Android share facility, the menu that is presented changes
depending on what apps are installed (see Figure 1). For
instance, if the Facebook app is installed then one would be
able to share the content with Facebook and create a new
post. This is an example of collaboration that supports a
user’s workfl ow.

Note that the Amazon Shopping app documents this
behaviour on Google Play and lists the following product
feature: ‘Send and share links to products via email, SMS,
Facebook, Twitter, and more.’ Note further that in this
example we report on the existence of a collaboration but
refrain from making any claim concerning the absence of a
collusion between these two apps.

2. 2. A colluding app set

When working on the ACiD project, we discovered a group
of apps that used collusion to synchronize the execution of a
potentially harmful payload. This payload was embedded into
all the apps through a library called MoPlus SDK. MoPlus
is included in more than 5,000 Android installation packages
(APKs). This library has been known to be malicious since
November 2015 [3]. However, the collusion behaviour of the
SDK was previously unknown.

We found that apps that included the malicious version of
the MoPlus SDK would talk to each other (when running
on the same device) to check which of them had the highest

Figure 1: Left: Sharing an item from the Amazon Shopping app without the Facebook app installed. Right: Sharing an item from
the Amazon Shopping app with the Facebook app installed yields a new menu entry, allowing the user to post the item to their

Facebook account.

ID Package Version MD5

C1 com.baidu.searchbox 6.0 062f91b3b1c900e2bc710166e6510654

C2 com.game.jewelsstar 1.6 00c7a61c7dababe41954879a8ec883dc

C3 com.baidu.browser.apps 5.6.4.0 0230e68490a88d2d4fc0184428ba2c07

C4 com.baidu.browser.apps 5.6.4.0 0658c01e2f28dff29bc40d57df6a0336

C5 com.appandetc.sexypuzzle 1.9.9.1 01a05de59d875077866dc3d81e889d9c

C6 com.baidu.appsearch 6.1.0 05260d6cc0a4d43e0346b368ddce8029

C7 com.baidu.appsearch 6.3.1 03f39e7de7ed90789b349d2a7a097d0b

C8 com.baidu.appsearch 6.4.0 0742c85c39c67c21c0b2fc9f33ab1232

Table 1: Set of colluding apps used for the experiments in this paper. C3 and C4 have the same package and version number, but
differ in some of their content.

 VIRUS BULLETIN www.virusbulletin.com

MARCH 2018 3

privileges. The app with the highest privileges would then be
chosen to execute a local HTTP client to receive commands
from an external C&C server, maximizing the effects of the
malicious payload. MoPlus was using SharedPreferences and
Intents for inter-app communication. (For a more detailed
description of the colluding behaviour of these apps, please
see [4].)

For this paper we performed experiments on colluding app
sets which carried the MoPlus SDK. Table 1 provides a
summary of those apps, along with their package names and
MD5 hashes for ease of identifi cation by other researchers.

3. A SPECULATIVE APPROACH TO
DISTINGUISH BETWEEN COLLUSION AND
COLLABORATION
We investigate the hypothesis that a number of features
related to inter-app communications can automatically
be extracted from APKs and that, with the help of
machine learning, they can be used to distinguish between
collaboration and collusion.

It should be noted that our approach is necessarily a
speculative one due to a lack of labelled data (in other words,
app sets classifi ed as either benign or colluding maliciously)
– there has been only one set of colluding apps identifi ed
in the fi eld, and it is a challenge to provide many app sets
exhibiting benefi cial collaboration (where ideally one would
also know that these collaborating apps don’t collude).

To this end, we have identifi ed a number of potential static
features for which we will examine:

• Why they might be useful in order to distinguish
between collusion and collaboration

• Whether they can be extracted automatically using
current tools

• Their nature.

Apart from simple features related to communications (e.g.
sending and receiving intents) there are several less obvious
features to consider:

1. Code obfuscation

2. Properties extracted from app documentation

3. Ability of an app to detect if other apps are installed

4. Permissions used vs permissions requested

5. Code similarity.

For each of these features we will extract sample data from
the collaborating and colluding app sets described in Section
2. Having examined the feature, we will discuss how suitable
it appears for our purpose. Criteria include the possibility
of automatic extraction and fi rst indications based on our
examples.

Additionally, we have considered the feature:

6. User interaction.

Though this might be quite a useful feature, due to a
lack of corresponding tools, it is not possible to extract it
automatically. We shall discuss in detail why this feature
(currently) is not applicable.

Finally, we explore dynamic features.

 3.1. Code obfuscation

What it is: Code obfuscation refers to code transformations
that hide code functionality (fully) from human readers,
e.g. for the purpose of intellectual property protection, or
for disabling automatic functionality detectors, e.g. code
analysers. A survey of code obfuscation techniques and
obfuscation tools is presented in [5].

Why it might be a useful feature: [6] reports on methods to
identify the presence of obfuscations via various obfuscators,
such as Bangcle and ProGuard, while evaluating the
likelihood of the presence of malware when these tools have
been used. According to [6], Bangcle indicates an elevated
risk of malware presence while ProGuard appears to be
used in a more legitimate fashion, for protecting intellectual
property.

We propose to use automatic obfuscation evaluation (AOE)
to determine: (1) whether an app has been obfuscated, (2)
which obfuscator(s) were used, and (3) which obfuscation
techniques were applied. Further, to provide ‘obfuscation
collusion risk for a set of apps’, denoted as OCR(S), we
aggregate all the individual AOEs of the apps in the set S.
Then we use OCR(S) to discriminate between collusion
and collaboration, where sets below a certain threshold of
OCR(S) would be considered ‘low risk’. Next, we explain
how AOE works at each step (1-3):

1. If an app is obfuscated, a dedicated tool can provide
the degree of obfuscation, OD, which effectively
obstructs malware analysis tools.

2. According to [6], identifying the obfuscator(s) used to
hide the app code helps discriminate collusion from
collaboration based on a credibility factor associated
with an obfuscator. Consequently, we assume that the
malware production risk (MPR) associated with an
obfuscator is proportional to AOE.

3. Some obfuscation techniques are known to hide the
code completely, e.g. (partial) server-side execution
may load code from a remote resource. We use the
code-hiding degree, HD, combined with OD to defi ne
an app’s obfuscation risk evaluation (Oth-RE) as
proportional to HD and OD.

Finally, the value AOE for an app is defi ned as the product of
MPR and Oth-RE.

VIRUS BULLETIN www.virusbulletin.com

MARCH 20184

Automated extraction of this feature: A recent tool, which
we refer to here as TOD, described in [7], uses machine
learning to identify the obfuscator of an Android app for
a given set of obfuscation tools and for a number of their
confi guration options. This appears to be the fi rst and only
work to automatize the obfuscation identifi cation problem.
Technically, the authors of [7] identify a feature vector that
represents a characteristic of the obfuscated code. TOD
extracts this feature vector from the Dalvik bytecode and uses
it to identify the obfuscator provenance information.

TOD focuses on obfuscations at the level of class, fi eld and
method names, as well as evaluating the package structure
after removing unused code. Based on these parameters, the
tool learns the different patterns of obfuscations available
for obfuscators from a given training set. Currently, the
training set focuses on learning obfuscation patterns for
fi ve obfuscators: ProGuard [8], Allatori [9], DashO [10],
Legu [11] and Bangcle [12]. Experiments indicate that TOD
identifi es the obfuscator with 97% accuracy and recognizes
the obfuscator’s confi guration with more than 90% accuracy.
Based on [6], we associate ProGuard with low MPR while
Bangcle gets a high MPR value.

Feature extraction from the running examples: Table 2
presents the evaluation results produced by TOD for the apps
described in Section 2. We would like to thank the authors
of [7] for providing us with these results. TOD produces a
safe result in that, when a known obfuscator is detected as
having been applied to an app, that obfuscator is reported as
the result; in other cases, the reported result is ‘Not known’,
which means that either an unknown obfuscator was used
or no obfuscation was detected. Admittedly, the results in
Table 2 do not help in distinguishing between collusion and
collaboration solely via MPR for this example set. Note also
that, for the moment, we do not provide an AOE aggregation
formula for OCR(S).

Evaluation of the feature: Using a similar approach to the
one employed in [6] for obfuscation tools and including risk
evaluation for obfuscation techniques (e.g. techniques that

make static analysis impractical) should assist in collusion/
collaboration differentiation, via Oth-RE. However, currently,
the TOD tool does not include detection of obfuscation
techniques and the results for our example set do not show
obvious differentiations.

 3.2. Properties extracted from app documentation

What it is: It is clear that it should be possible to inspect app
documentation and classify/cluster apps according to their
described behaviour (e.g. game apps, weather apps, etc.). The
Google Play app ranking algorithm is a good example of this
approach. It utilizes app metadata such as title, description
and reviews in order to rank user search results based on their
relevance to user queries.

Why it might be a useful feature: We speculate that app
descriptions can be utilized to distinguish between colluding
and collaborating apps, subject to the assumption that benign
collaborative behaviours (if any) will be documented in the app
description and that behaviours that are invisible to the user are
‘suspicious’. For example, for an app/app pair belonging to a
certain class of apps, say gaming apps, there might be a certain
expectation as to which resources (i.e. permissions) it might
need. In other words, the described behaviour (as found in the
app descriptions on, e.g. Google Play) should comply with the
resources requested by an app/app pair, and any discrepancy
between the described behaviour and requested resources
warrants further investigation either in the context of collusion
or as an individual malicious app. So, we need to analyse the
app descriptions automatically to extract three features: (a)
the category of the app, (b) resources that it wants to use, and
(c) collaboration with other apps, as in the example shown in
Table 3.

Automated extraction of this feature: Using the app
description, features (a), (b) and (c) can be extracted as
follows: we create a sample corpus of app descriptions for
each app category in the Google Play app store (see Table 4).
A corpus is a structure for storing text documents of app
descriptions with their metadata. After that we do some basic

 Application Obfuscator : AOE
C1 com.baidu.searchbox ProGuard : LOW x Oth-RE
C2 com.game.jewelsstar Not known : Oth-RE
C3 com.baidu.browser.apps Not known : Oth-RE
C4 com.baidu.browser.apps Not known : Oth-RE
C5 com.appandetc.sexypuzzle ProGuard : Low x Oth-RE
C6 com.baidu.appsearch ProGuard : Low x Oth-RE
C7 com.baidu.appsearch Not known : Oth-RE
C8 com.baidu.appsearch Not known : Oth-RE
A1,2,3 Amazon XYZ.apk Not known : Oth-RE
F Facebook_v149.0.0.40.7…om.apk ProGuard : Low x Oth-RE

Table 2: Detection of obfuscation tool using TOD.

 VIRUS BULLETIN www.virusbulletin.com

MARCH 2018 5

text preprocessing on our corpus – for example, removing
extra white spaces and document words, ignoring extremely
rare words and very common words, etc. Then we create the
fundamental object for our text analysis called the Document
Term Matrix (DTM). DTM is a matrix that describes the
frequency of each term in each document in our corpus
arranged in rows (app names) and columns (terms in the
descriptions). If a term occurs in a particular app description
n times, then the matrix entry corresponding to that row and
column is n, otherwise 0. Finally, based on DTM, we can
build our classifi er to classify a given new app description in
a known category, as DTM serves as a feature vector for this
purpose. In order to extract (b) and (c) above, it’s possible
to employ a simple regular expression search on the app
description text.

Feature extraction of the running examples: In order to
compute discrepancies between described behaviour (i.e.
app category) and requested resources shown in Table 3, we
need a list of all permissions that are typically associated
with each app category type in Table 4. For example, weather
applications generally request the following resources
(permissions): approximate location, precise location, view
Wi-Fi connections, view network connections, full network
access, control Near Field Communication, etc. Likewise,
we can compute a ‘norm’ resources set for each category
using a statistically signifi cant sized sample set. Finally, for
any given pair of apps, we can compute the distance between
requested resources (Table 3) and the ‘norm’ resources set
for that app category using a DTM. If this distance exceeds
a certain threshold then the target app/app pair is suspicious
and warrants further investigation.

We implemented the above analysis using R – a language
designed for statistical computing. It is possible to automate
the entire analysis with the help of web-crawling tools (e.g.

SEO Spider, Selenium) and machine-learning tools (e.g. R,
Python).

Evaluation of the feature: As shown in Table 3, MoPlus
apps have not documented their association with other apps
in their app descriptions. However, Amazon has documented
its cooperation with the Facebook and Twitter apps. From
the machine-learning perspective, it’s true that a few counter
examples are insuffi cient to draw a generalized conclusion,
but this observation provides us with reasonable grounds to
speculate that this kind of analysis could become a useful
feature and that it would be worthwhile investigating further.

 3.3. Ability of an app to detect if other apps are
installed

What it is: The Android operating system offers a wide range
of communication options that enable apps to cooperate and
share information. Additionally, Android allows apps, when
the necessary permissions are requested, to check if other
apps are installed. This feature could be used by collaborating
apps to adapt their interface and functionality to the apps
available on the execution device, but it could also be used to
coordinate a collusion attack.

Why it might be a useful feature: Colluding apps can
execute their actions without checking if their collusion
counterparts are installed and currently running. However,
for attackers this approach has several drawbacks. Firstly,
the attack may not be successful if the second app is required
but is inactive. Secondly, the malicious payload may create
visible indicators (system calls, logs, fi les, etc.), which would
simplify discovery of the collusion even when a single app is
analysed. So we expect most colluding apps to include a step
to detect if their colluding ‘buddies’ are installed and active
on the victim’s device.

App
name

Category Requested resources Documented
collaboration

A1 Shopping Find accounts on the device, add or remove accounts, read your contacts,
approximate location, ...

Facebook,
Twitter

F Social Retrieve running apps, fi nd accounts on the device, add or remove
accounts, read your own contact card, ...

None

C3 Communication Approximate location, precise location, ... None

C6 Tools Find accounts on the device, read the contents of your USB storage, ... None

Table 3: Feature extraction (due to space constraints only part of the table is presented).

Category Examples

Art & design Sketchbooks, painter tools, art & design tools, colouring books

Books & reference Book readers, reference books, textbooks, dictionaries, thesaurus, wikis

Shopping Online shopping, auctions, coupons, price comparison, shopping lists, product reviews

Table 4: Possible app categories in the Google Play app store [13] (due to space constraints only part of the table is presented).

VIRUS BULLETIN www.virusbulletin.com

MARCH 20186

Automated extraction of this feature: App developers
have access to several API calls and commands to detect
the presence of other apps in the system. These can be
detected by static analysis tools such as Androguard [14].The
following list summarizes the indicators which could be used:

• M1: The Android ActivityManager and PackageManager
classes offer information about opened and installed
apps. Apps using these classes to get information about
the running processes on the system must request the
GET_TASKS permission.

• M2: The list of running processes can be accessed
through a shell command. Android allows apps to
execute shell commands through the Runtime class. For
instance, the list of running processes could be obtained
by executing the Linux ‘ps’ command via
Runtime.getRuntime().exec(‘ps aux’), which returns a
Process object.

• M3: A colluding app could create a lock fi le or variable
inside any of the Android shared resources such as
Shared Preferences, the external storage or the Internet.
Access to the external storage requires the READ_
EXTERNAL_STORAGE and WRITE_ EXTERNAL_
STORAGE permissions. Access to the Internet requires
the INTERNET permission.

• M4: Colluding apps can register an IntentFilter to
answer specifi c broadcast intents from other colluding
apps. Other apps can check if an IntentFilter is
registered by other Broadcast receivers through the
PackageManager API. The queryBroadcastReceivers
method returns those BroadcastReceiver objects that
have registered to answer a specifi c Intent. In a similar
way, this class also offers the queryIntentActivities
method, which returns the Activity objects that would
answer a specifi c Intent.

These APIs allow apps to verify if another app is installed but
do not necessarily indicate the existence of colluding apps.
However, since we expect colluding apps to check if their
‘buddies’ are installed on the same device, we consider this
feature to be indicative of collusion.

Feature extraction of the running examples: In fact, one of
these indicators was present in a documented fi eld collusion
case [4]. In this case, colluding apps checked if a specifi c
BroadcastReceiver was installed to see if the other colluding
apps were installed and running on the victim’s device (M4).

Table 5 compares the MoPlus SDK (all apps which include
malicious versions of this SDK are known to collude [3])
with the Amazon and Facebook apps. For each detection
possibility, we show (with a check mark, ‘’) which sets of
apps have the indicators in at least one of the apps. In the
case of MoPlus apps, we have analysed classes belonging to
the MoPlus SDK, not the whole binary fi le.

Evaluation of the feature: While extraction of this feature
is not very hard, the results show no signifi cant difference
between benign and malicious app sets. Collaborating apps
may also check if other apps are present in order to improve
user experience.

 3.4. Permissions used vs permissions requested

What it is: In this section, we show that permissions analysis
based on manifest fi les can provide a useful insight when
differentiating between collusion and collaboration.

Why it might be a useful feature: Intuitively, honest
programmers will always be transparent about the permissions
that are used in their applications. Conversely, malicious
programmers are likely to request many permissions in
order to obtain more privileges, or to hide the use of critical
permissions in the manifest fi les of their applications. In this
section, we will examine whether analysing permissions is
useful to differentiate between the two. In particular, we will
look at ratios between used and declared permissions and at the
number of permissions used without being declared.

Automated extraction of this feature: We used Permission
Checker7 [15], a permissions analysis tool for APK fi les,
to extract the requested permissions from the manifest
fi le within an APK and the permissions used by method
invocations in the APK’s bytecode. To this end, Android
permissions (AP) are categorized into four different groups:

• Declared permissions (DAP): APs declared in the
Android manifest fi le.

• Used permissions (EAP): APs declared and used in the
bytecode.

• Ghost permissions (GAP): APs used but not declared.

• Useless permissions (UAP): APs declared but not used.

Given an application, A, DAP
A
 denotes the set of declared

permissions for A, and EAP
A
 the set of used permissions. For

each pair of applications (A,B), we are interested in the ratio
of used vs declared APs, defi ned as:

R
A,B

= | EAP
A
  EAP

B
 | / | DAP

A
  DAP

B
 | [0,1]

and the number of undeclared permissions:

U
A,B

= | GAP
A
GAP

B
 | N

7 The results of this tool should be interpreted with a little caution:
on applying it to apps we had written ourselves, the results were not
completely accurate.

M1 M2 M3 M4

MoPlus (colluding)  

Amazon/Facebook (collaborating)   

Table 5: Comparison of the MoPlus SDK with Amazon and
Facebook apps.

 VIRUS BULLETIN www.virusbulletin.com

MARCH 2018 7

Feature extraction of the running examples: We
apply Permission Checker and compute R and U fi rst
for the collaboration set containing Facebook and
Amazon applications. They are: (A1) Amazon Shopping
(version 14.2.0.100), (A2) Amazon Prime Video (version
3.0.213.147041), (A3) Amazon Underground (version
8.0.0.200), and (F) Facebook (version 149.0.0.40.71). The
results are shown in Table 6.

R
A,B

A1 A2 A3 U
A,B

A1 A2 A3

F 0.10 0.18 0.14 F 0 0 0

Table 6: Pair analysis of Amazon and Facebook applications.

The same analysis is applied to the colluding set of MoPlus
applications. The results are shown in Table 7.

For benign apps, Table 6 shows that the R
A,B

 ratio varies from
0.14 to 0.18, while the number of undeclared permissions,
U

A,B
, is 0. Table 7 shows that, for colluding pairs of MoPlus

applications, the R
A,B

 ratio ranges between 0.17 and 0.29,
while undeclared U

A,B
 can go up to 2.

Evaluation of the feature: We demonstrated that this feature
can be extracted automatically. Overall, our evaluation
supports the conjecture that R

A,B
 values are smaller for

collaboration than for collusion. Therefore, they can be useful
features to differentiate between collaboration and collusion.

 3.5. Code similarity

What it is: Identifying code similarities serves many
purposes which include studying code evolution, detecting
source code plagiarism, enabling refactoring, and performing
defect tracking and repair.

Why it might be a useful feature: All maliciously colluding
apps ought to operate together, so they are likely to be
coded by the same person (or team) and during the same
time frame. This makes it more than likely that they would
have identical development environments, share signifi cant
portions of source code, use the same libraries, and perhaps

even share a coding style and include the same programmer’s
errors. Therefore code similarity metrics should be strong and
useful features.

Automated extraction of this feature: Many tools are freely
available to detect and measure code similarity. They are
based on different techniques, ranging from lightweight
line- and token-based syntactic approaches to heavyweight
semantics-based approaches. For example, a lightweight tool
like Simian (Similarity Analyser) identifi es code similarities
based on syntactic techniques, but does not quantify the
degree of similarity that exists between potential clones –
but a user can defi ne a similarity score based on its output,
as shown later in this section. Moreover, a tool like Moss
emphasizes the semantic similarities of programs using the
‘winnowing algorithm’ [16] to selected fragments of source
code to be fi ngerprinted, and then calculates a similarity
percentage based on the set of common fi ngerprints.

Feature extraction of the running examples: In order to
demonstrate the feasibility of proposed feature extraction, we
downloaded an APK from the Google Play Store along with
its source code [17]. Using JADX [18] – a tool for creating
Java source code from Android DEX and APK fi les – Java
source code was produced for the APK. Then Simian [19] was
employed to calculate similarities between the original source
code and the re-engineered source code. Simian reported 12
similar lines out of 176 line comparisons in this analysis,
which resulted in a 12/176 = 0.07 similarity score. Though
we compared the original source code of the app against its
re-engineered code, the similarity score obtained here was
very low. This is probably due to the fact that Simian performs
only syntactic pattern matching rather than functional/semantic
matchings. One can never get back to the exact same source
since there is no metadata with the compiled code. Therefore,
re-engineered code may be syntactically different from its
original source code and a low similarity score via syntactic
pattern matching should be expected.

Evaluation of the feature: Table 8 presents the code
similarity scores automatically computed for the set of

R
A,B

/U
A,B

C1 C2 C3 C4 C5 C6 C7 C8

C1 N/A 0.28/1 0.19/1 0.19/1 0.21/1 0.27/0 0.19/0 0.19/0

C2 0.28/1 N/A 0.20/0 0.20/0 0.28/2 0.29/0 0.20/0 0.19/0

C3 0.19/1 0.20/0 N/A 0.19/0 0.18/1 0.23/0 0.17/0 0.17/0

C4 0.19/1 0.20/0 0.19/0 N/A 0.18/1 0.23/0 0.17/0 0.17/0

C5 0.21/1 0.28/2 0.18/1 0.18/1 N/A 0.24/0 0.18/0 0.17/0

C6 0.27/0 0.29/0 0.23/0 0.23/0 0.24/0 N/A 0.19/0 0.18/0

C7 0.19/0 0.20/0 0.17/0 0.17/0 0.18/0 0.19/0 N/A 0.18/0

C8 0.19/0 0.19/0 0.17/0 0.17/0 0.17/0 0.18/0 0.18/0 N/A

Table 7: Pair analysis of MoPlus applications on R
A,B

 and U
A,B

.

VIRUS BULLETIN www.virusbulletin.com

MARCH 20188

MoPlus apps. The score for the Facebook-Amazon app pair
is 0.26 and there is no clear distinction from the MoPlus
app values. However, the sample size is not statistically
signifi cant so we cannot draw any conclusion here. As
mentioned above, getting back to the exact same source code
is diffi cult, and re-engineered code is syntactically different
from its original source code. This might have a negative
effect on the usefulness of this feature in practice.

C1 C2 C3 C4 C5 C6 C7 C8

C1 N/A 0.081 0.081 0.174 0.088 0.118 0.109 0.131

C2 0.081 N/A 0.01 0.01 0.028 0.012 0.016 0.013

C3 0.081 0.01 N/A 1 0.008 0.062 0.061 0.073

C4 0.174 0.01 1 N/A 0.008 0.062 0.061 0.073

C5 0.088 0.028 0.008 0.008 N/A 0.009 0.014 0.01

C6 0.118 0.012 0.062 0.062 0.009 N/A 0.883 0.764

C7 0.109 0.016 0.061 0.061 0.014 0.883 N/A 0.647

C8 0.131 0.013 0.073 0.073 0.01 0.764 0.647 N/A

Table 8: Similarity scores (pairwise) for MoPlus
applications.

 3.6. User interaction

What it is: This feature is defi ned based on the apps’
interaction with the user and it aims to predict malicious
behaviour based on measuring the honesty of an app’s
communication with the user. We propose to evaluate the
quality and quantity of the messages/images used by an app
for user interaction.

Why it might be a useful feature: If an app shows a standard
Android ‘Share’ icon, then it is likely that corresponding
communications with other apps would be benign. Even
better would be if there was a message that explained what
is shared and why. However, producing good user interaction
(UI) evaluators is a challenging task. In our view, the
evaluation of the interaction needs to focus on the content
of the UI. For example, a long, detailed message (which is
easier to evaluate) explaining a button requesting access to a
particular resource would work well for more mature users.
If, however, the same long text is presented to a child, then
it might not be quite as effective: due to different perception
capabilities, there are different classes of users. Optimally, we
would want to use a UI analysis tool capable of combining
analysis of the text and the complexity of the UI elements to
produce a collusion risk evaluation. Moreover, a combination
of such UI analysis with API mapping could be used to
decide whether a certain UI element, such as a button,
should allow a specifi c API call. We foresee this analysis as
being rather useful when looking for collusion, but there is a
challenge in fi nding suitable tools.

Automated extraction of this feature: At the moment, there
are several tools capable of testing user interaction in Android
apps, for example Monkey Runner [20] and Espresso Testing
Framework [21]. Monkey Runner allows apps to be installed
and tested by generating stimuli so that an app does things as
if a user were interacting with it. The tool basically acts as a
software robot, which produces a sequence of touch events
that, when sent to an emulator or device, interacts as a human
would. Coupling this with a dynamic analysis tool would allow
us to inspect which UI elements trigger communication APIs.

The Espresso Testing Framework is included within Android
and allows the execution of UI tests. Instead of generating
touch events, this framework accesses the interface elements
of the screen directly. This approach would prove useful for
extracting the interface elements of apps for evaluating their
quality, eventually by means of a wrapper.

Feature extraction of the running examples: We were
not able to fi nd a tool that suits our aims for UI collusion
risk evaluation. As mentioned, the available UI tools target
slightly different usage scenarios. This makes automated
feature extraction cumbersome.

Evaluation of the feature: The UI collusion risk evaluation
could be executed via a combination of techniques involving
data mining, text evaluation and image processing. We still
believe that UI interaction has potential in distinguishing
malicious behaviour.

 3.7. Dynamic features

In the previous sections, we discussed many features which
would assist in discovering colluding apps and which can
be extracted statically. The feature set may be improved
further by adding dynamic features, extracted at runtime. In
many cases dynamic tools would also be helpful to improve
extraction of static features – for example when static
analysis tools fail to detect and extract the features due to
code obfuscation or due to the code using refl ection.

One approach to facilitate dynamic analysis is to put
wrappers around apps in order to log their actions – for
example, a wrapper might log accesses to restricted resources
and external communications. One such tool is APIMonitor
from the team that developed Droidbox [22]. To extract
the runtime features of an app one would need to apply the
wrapper to that app, execute it, and then analyse the logs
generated by APIMonitor.

Another approach is to create a special instrumented version
of Android, populate it with multiple apps, and record the
actions. There are existing research tools based on this
approach, for example CopperDroid [23], which is focused
on dynamic analysis of apps. CopperDroid, however, is
currently only capable of monitoring a single app, although
it may be extended to execute multiple apps and extract
features related to access to sensitive resources and inter-app

 VIRUS BULLETIN www.virusbulletin.com

MARCH 2018 9

communications. Unfortunately, using dynamic feature
extractors was well beyond the scope of our project.

 4. MACHINE LEARNING

Having explored a number of features, we will now discuss
how one could potentially use them to train a model
with a machine-learning approach in order to distinguish
automatically between app collaboration and collusion.

In general, it is the quality of the input data that determines
the output quality of machine-learning algorithms. Hence,
after exploring a potential feature set, it is necessary to
perform data exploration (including feature engineering),
cleaning and preparation before initiating modelling and
evaluation. This will help us to systematically identify
important features among the feature set that actually inform
our modelling. Unfortunately, the sizes of the app sample sets
(both colluding and collaborative) employed in this paper
were not suffi cient for this purpose.

Learning algorithms are chosen based on the given input
data and the learning task at hand. For example, if labelled
data is provided and the learning task is ‘classifi cation’,
then we can apply a supervised learning algorithm, e.g.
support vector machine (SVM) [24], to the problem. In
the collusion context, classifi cation refers, for example, to
automatically labelling a previously unseen app pair as either
colluding or collaborating. However, applying a supervised
algorithm to our problem would be diffi cult due to the lack
of known collaborating and known colluding app samples
that are available in the wild. As in many other security
problems, this represents a major constraint in applying
supervised learning techniques. However, it is still possible
to apply unsupervised, semi-supervised or novelty (anomaly)
detection techniques [25, 26] to this problem.

In unsupervised learning, we only need the input data of
the features, no corresponding output labels are required. The
goal here is to model the underlying structure or distribution
of the data in order to learn more about the dataset.
Algorithms are left on their own to discover and present
interesting structures rather than training them using labelled
data. Our problem can be modelled as a clustering (e.g.
k-means) or association (e.g. AprioriDP) rule problem [25].
Clustering discovers the inherent groupings in our dataset
while association discovers interesting relationships between
elements of the input data. The underlying assumption here
would be that colluding and collaborating apps have different
distributions in terms of the above features and therefore
should form disjoint groups that correspond to colluding and
collaborating app sets.

As shown in the literature [27], app collusion is a real threat.
But as far as anyone knows, the base rate of colluding apps
in the wild is close to zero. In this situation, approaching

the issue as a semi-supervised learning problem would
be sensible. Many real-world security problems (e.g. credit
card/toll fraud detection) fall into this category, in which
only some events are labelled as benign/malicious and
the majority are unlabelled [28]. This is because it can be
expensive to label data, as domain experts are required.
Unlabelled data is typically cheap and easy to collect and
store. In this case unsupervised learning algorithms can be
employed to discover and learn structures within the input
variables, and then supervised learning (e.g. SVM, KNN)
[25] can be applied to make best-guess predictions for the
unlabelled data. After that, the data can feed into a supervised
learning algorithm for training purposes and the model can be
used to make predictions on new, unseen app pairs as they are
colluding and collaborating.

Alternatively, it might be possible to obtain a considerable
amount of data representing the benign class (i.e. non-
colluding), whilst not having suffi cient and reliable data
representing the malicious class (i.e. colluding). This would
hinder training and, in particular, the testing procedures of
whatever algorithms are chosen to solve this problem. In order
to minimize this diffi culty, we propose a one-class modelling
approach (including novelty/anomaly detection) [29] to move
forward in such a context. The idea here would be fi rst to train
a model using only benign samples. This trained model could
then be used for the identifi cation of new/unknown data (that
the model had not been trained with) with the help of either
statistical or machine-learning based approaches. To achieve
this, spot-checking the one-class support vector machine would
be the fi rst step.

Note that none of the above learning algorithms needs to
be built from scratch. Many useful libraries of extensible
algorithms are freely available in R, Python, and also ML
libraries in other programming languages. These can be
extended and adapted for this purpose.

 5. FUTURE OF ANDROID
Malicious collusion became possible in Android due to a
series of unfortunate design decisions. Future versions of
Android (or any OS that succeeds it) must have a better
defi ned and more regulated communication framework in
general. We strongly advocate the following changes:

Firstly, we believe that the OS should require an explicit
declaration of all app communication methods in the app
manifest. At the moment this is done with the exported
property for Services and BroadcastReceivers, but the
operating system does not even make them visible to the user.
If app developers were required to make explicit declarations
then all inter-app communications would be visible to
users and analysis tools would be able to inspect them.
This approach would also underpin more granular policies
(in Google Play as well as in the OS at runtime) around

VIRUS BULLETIN www.virusbulletin.com

MARCH 201810

communications. Similarly, it would be very desirable to have
a declaration in the manifest of all the Internet domains and
URLs that an app is allowed to contact. That would provide
a much better and more granular control than the very broad
INTERNET permission. It would also allow analysis of
communications which occur outside of the device, where
an external website is operating as an intermediary between
two apps on the same device. This step would signifi cantly
reduce the risk of privacy intrusions from advertisement
libraries embedded in apps and would allow better methods
for checking the privacy status of apps.

Secondly, we propose allowing apps to interact while
enabling them also to evaluate the interaction with other
apps. The evaluation protocol would be pre-set and intended
to give each app a certain authority level in evaluating the
quality of the interaction with its peers. The protocol could
be provided via a wrapper that each application is either
allowed or required to use in certain Android environments.
This approach would enable post-mortem analysis methods
for evaluating apps based on their behaviour in interaction
with their peers. The main question that our future research
would, in this case, need to answer is: which basic set of
rules should the peer evaluation system provide? This basic
set of rules would be crucial for allowing discrimination
between collusion and collaboration. An approach that
implements this to some extent is Android Work [30], which
introduces a further sandboxing that separates personal apps
from professional ones: the mobile device management
administrator decides which apps go into the professional
sandbox, and the user is able to install apps on the personal
sandbox. Apps from the two different sandboxes are not
allowed to interact and they can be switched on and off by
category. This would mean implementing OS support for app
group isolation – similar, for example, to Samsung Knox.

Both of our proposals would have to include a regulatory
phase and an evaluatory/analysis mechanism. In the
regulatory phase a set of rules should be provided either by
Android OS, e.g. the fi ner-grained communication intents
declaration suggested in the fi rst proposal, or by Android
wrappers, e.g. the set of standards in app evaluation of
peer communication. The evaluatory phase uses the set of
rules introduced in the regulatory phase to analyse apps
and discover properties like collusion. For example, the
fi rst proposal aims for traditional analysers to benefi t from
additional information in order to produce more accurate
results. Meanwhile, the second proposal relies on the
post-mortem evaluatory phase that focuses on apps’ feedback
based on communications to evaluate collusion risk.

Coupling of the regulatory and evaluatory phases aligns
the research desideratum of our current work with today’s
trend of regulating and verifying AI. Namely, with recent AI
developments, it has become obvious that technology may go
out of control and may produce unexpected problems. Take,

for example, the case of the Facebook AI business agent-
to-agent negotiation project [31] that used natural language
and produced unexpectedly effi cient results. The conclusion
of the project was that AI may be able to surpass intuitive
strategies when trained well enough. Consequently, the
scientifi c community is currently organizing itself to evaluate
the status and progress of AI, and to propose an (initial) set
of measures for controlling the direction of its development
[32].

Moreover, we envisage seeing the usage of AI/machine-
learning methods in app code. Hence, early security measures
must be provided in the form of more (self) regulation
and safer activity of apps in Android and other mobile/IoT
operating systems.

 6. CONCLUSION
There cannot be collusion in a single app, there has to be a set
(a pair/triplet/quadruplet, etc.). Having in mind a high number
of Android apps and an almost infi nite number of app sets,
it soon becomes clear that only only automated methods are
appropriate for discovering collusions and for distinguishing
between benign cooperation and malicious activities.

We have described and evaluated a set of carefully selected
features (based on common sense as well as on expert
opinions). We have shown that machine learning is a
promising approach to distinguish between colluding and
collaborating apps. Many of the proposed features could form
a solid basis for detecting malicious app sets in the Android
universe. In some cases we have identifi ed technological gaps
where tools are missing or require more work before they can
be applied to the problem at hand.

The ultimate solution, however, is to implement changes in
the OS – that would discourage abuse and allow much easier,
automated discovery when it happens.

REFERENCES
[1] Asavoae, I.M.; Blasco, J.; Chen, T.M.; Kalutarage,

H.K.; Muttik, I; Nguyen, H.N.; Roggenbach, M.;
Shaikh, S.A. Detecting Malicious Collusion Between
Mobile Software Applications: The Android TM
Case. In Palomares Carrascosa, I.; Kalutarage,
H.K.; Huang, Y. (Eds.): Data Analytics and Decision
Support for Cybersecurity – Trends, Methodologies
and Applications, Springer 2017.

[2] Blasco, J.; Chen, T.M.; Muttik, I.; Roggenbach, M.
Detection of App Collusion Potential Using Logic
Programming. Journal of Network and Computer
Applications, Volume 105, 1 March 2018, pp.88-104.

[3] Shen, S. Setting the Record Straight on Moplus SDK
and the Wormhole Vulnerability.

 VIRUS BULLETIN www.virusbulletin.com

MARCH 2018 11

http://blog.trendmicro.com/trendlabs-security-
intelligence/setting-the-record-straight-on-moplus-
sdk-and-the-wormhole-vulnerability/.

[4] Blasco, J.; Muttik, I.; Roggenbach, M.; Chen, T.M.
Wild Android Collusions. In Proceedings of the
26th Virus Bulletin International Conference, 2016.
https://www.virusbulletin.com/virusbulletin/2018/03/
vb2016-paper-wild-android-collusions/.

[5] Collberg, C.; Thomborson, C.; Low, D. A taxonomy
of Obfuscating Transformations. Technical Report
148, The University of Auckland.

[6] Apvrille, A.; Nigam, R. Obfuscation in Android
Malware and how to Fight Back.
https://www.virusbulletin.com/virusbulletin/2014/07/
obfuscation-android-malware-and-how-fi ght-back.

[7] Wang, Y.; Rountev, A. Who Changed You?
Obfuscator Identifi cation for Android. In
MOBILESoft@ICSE 2017: 154-164.

[8] ProGuard. https://www.guardsquare.com/en/
proguard; https://stuff.mit.edu/afs/sipb/project/
android/sdk/android-sdk-linux/tools/proguard/docs/
index.html#manual/introduction.html.

[9] Allatori. http://www.allatori.com/.

[10] DashO. https://www.preemptive.com/products/dasho/
overview.

[11] Legu. http://wiki.open.qq.com/wiki/%E5%BA%
94%E7%94%A8%E5%8A%A0%E5%9B%BA.

[12] Bangcle. https://www.bangcle.com/.

[13] https://support.google.com/googleplay/android-
developer/answer/113475?hl=en-GB.

[14] Androguard. https://github.com/androguard/
androguard.

[15] Merlo, A.; Georgiu, G.C. RiskInDroid: Machine
Learning-Based Risk Analysis on Android.
SEC 2017: 538-552. https://link.springer.com/
chapter/10.1007%2F978-3-319-58469-0_36.

[16] Schleimer, S.; Wilkerson, D.; Aiken, A. Local
algorithms for document fi ngerprinting. In
Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data
2003 June 9 (pp.76-85). ACM.

[17] https://github.com/gabrielecirulli/2048.

[18] JADX. https://github.com/skylot/jadx.

[19] Simian. http://www.harukizaemon.com/simian/
index.html.

[20] Monkey Runner. https://developer.android.com/
studio/test/monkeyrunner/index.html.

[21] Espresso Testing Framework.

https://developer.android.com/training/testing/ui-
testing/espresso-testing.html.

[22] Droidbox. https://github.com/pjlantz/droidbox.

[23] Tam, K.; Salahuddin, J.K.; Aristide, F.; Cavallaro, L.
CopperDroid: Automatic Reconstruction of Android
Malware Behaviors. In NDSS. 2015.

[24] Corinna Cortes, C.; Vapnik, V. Support-vector
networks. Machine learning 20, no. 3 (1995): 273-297.

[25] Roiger, R.J. Data mining: a tutorial-based primer.
CRC Press, 2017.

[26] Buczak, A.; Guven, E. A survey of data mining
and machine learning methods for cyber security
intrusion detection. IEEE Communications Surveys
& Tutorials 18, no. 2 (2016): 1153-1176.

[27] Marforio, C.; Ritzdorf, H.; Francillon, A.; Capkun,
S. Analysis of the communication between colluding
applications on modern smartphones. In Proceedings
of the 28th Annual Computer Security Applications
Conference 2012 Dec 3 (pp. 51-60). ACM.

[28] Jaiswal, A.; Manjunatha, A.S.; Madhu, B.R.;
Chidananda Murthy, P. Predicting unlabeled traffi c
for intrusion detection using semi-supervised
machine learning. In Electrical, Electronics,
Communication, Computer and Optimization
Techniques (ICEECCOT), 016 International
Conference on 2016 Dec 9 (pp.218-222). IEEE.

[29] Pimentel, M.; Clifton, D.A.; Clifton, L.; Tarassenko,
L. A review of novelty detection. Signal Processing
99 (2014): 215-249.

[30] Android Work. https://www.android.com/enterprise/
employees/.

[31] Lewis, M.; Yarats, D.; Dauphin, Y.; Parikh, D.;
Batra, D. Deal or No Deal? End-to-End Learning of
Negotiation Dialogues. In EMNLP 2017: 2443-2453.

[32] Boddington, P.; Millican, P.; Wooldridge, M. Minds
and Machines Special Issue: Ethics and Artifi cial
Intelligence. Minds and Machines 27(4): 569-574
(2017).

Editor: Martijn Grooten

Head of Testing: Peter Karsai

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca,
Ionuţ Răileanu, Chris Stock

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Developer: Lian Sebe

© 2018 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Email: editor@virusbulletin.com
Web: https://www.virusbulletin.com/

https://www.virusbulletin.com/virusbulletin/2018/03/vb2016-paper-wild-android-collusions/
https://www.virusbulletin.com/virusbulletin/2014/07/obfuscation-android-malware-and-how-fight-back
https://www.guardsquare.com/en/proguard
https://www.guardsquare.com/en/proguard
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/introduction.html
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/introduction.html
https://www.preemptive.com/products/dasho/overview
http://wiki.open.qq.com/wiki/%E5%BA%94%E7%94%A8%E5%8A%A0%E5%9B%BA
https://support.google.com/googleplay/android-developer/answer/113475?hl=en-GB
https://github.com/androguard/androguard
https://link.springer.com/chapter/10.1007%2F978-3-319-58469-0_36
http://www.harukizaemon.com/simian/
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://www.android.com/enterprise/employees/

