
VIRUS BULLETIN www.virusbulletin.com

1JANUARY 2017

Covering the
global threat landscape

THE JOURNEY AND EVOLUTION
OF GOD MODE IN 2016:
CVE-2016-0189
Ankit Anubhav & Manish Sardiwal
FireEye, India

 INTRODUCTION

‘The survival of the fi ttest’ applies in a large variety of
fi elds. In cybersecurity it not only applies to detection
mechanisms but also to the attackers, as they continuously
need to update their arsenal and fi nd more successful ways
to attack. Here, ‘more successful’ does not necessarily mean
more complicated, but may mean an attack which is reliable,
modular and cheap, especially in cases where the attacker is
not well sponsored.

In 2016 we saw the continuation of a general shift in the most
commonly used attack vectors from exploits in browsers
and plug-ins to Offi ce macros, with macros becoming the
predominant carrier mechanism of threats including data
exfi ltration malware and ransomware.

Hence for a browser exploit to stay relevant, it not only has to
compete against other exploits, but also against macros, zipped
standalone JavaScript (as an email attachment), and other
malware delivery mechanisms. A present-day exploit must
be both reliable and suffi ciently straightforward to be used by
attackers who don’t have an in-depth understanding of exploits.
Once an exploit overcomes the challenges related to reliability
and complexity, it holds an edge over macros in that it doesn’t
require any social engineering to be activated, as macros do.

Exploits for the CVE-2016-0189 vulnerability offer reliability,
and with a working proof of concept that has decreased the
effort required to fork new variants, it is little wonder that
amongst the unique fi le hashes of exploits seen in 2016
(excluding those running on Android/Linux), CVE-2016-0189
was the most commonly exploited vulnerability:

• Reliability – One of the reasons why so few exploits are
used in the wild is their low reliability when it comes to
executing on the victim machine, since many of them are
version-dependent (unlike macros which usually run on
a variety of MS Offi ce versions). The CVE-2016-0189
vulnerability exists in different versions of Internet
Explorer, from IE9 to IE11.

• Complexity – The proof-of-concept exploit for
CVE-2016-0189 released by Theori [1] was elaborate
enough simply to develop many forks with minimal

changes to the original code. This enabled its inclusion
not only in ‘script kiddie’ tools like OffensiveWare Multi
Exploit Builder thanks to a one-line change in code, but
also in exploit kits like Gongda and Neutrino, which
added evasion modules to the basic exploit.

Figure 1: Distribution of unique hash volumes for CVE-2016
exploits observed during 2016.

This vulnerability was fi rst exploited in limited targeted
attacks that affected computer users in South Korea [2]
before Microsoft released a patch in May 2016. Theori’s
working proof of concept was released in June 2016.

The exploit is carried in an HTML page and can be hosted
on any URL or can be sent as a standalone HTML page in
an email. Any attempt to access the URL with a vulnerable
version of Internet Explorer will result in the malicious code
being run, which will be followed by the execution of a
desired payload.

GOD MODE

God Mode is an exploitation method in which VBScript
code can escape the browser’s sandbox. What makes it ‘God
Mode’ is that there is no need to bypass Microsoft provided
security features such as data execution prevention (DEP)
and address space layout randomization (ASLR), as there
is in usual exploits. Also, since there is no involvement
of heap spray or return oriented programming (ROP),
detection based on these techniques can potentially be
evaded [3].

CVE-2016-0189 GOD MODE BUG: ROOT
CAUSE ANALYSIS

God Mode 101

When VBScript code is executed in the Internet Explorer
sandbox, the code is prevented from creating and executing

VIRUS BULLETIN www.virusbulletin.com

JANUARY 20172

fi les on the local system. This restriction is provided using
a fl ag called ‘Safe Mode’ in the COleScript class of the
VBScript engine. If this fl ag is bypassed or overwritten with a
different value, the VBScript can run as if it is being executed
on the local shell.

Difference between 2016-0189 and 2014-6332
God Modes

We have seen a similar exploit in the past, which used
CVE-2014-6332 to bypass the Safe Mode fl ag. CVE-2014-
6332 was used as a type confusion vulnerability, which
allows out-of-bounds memory access. In contrast,
CVE-2016-0189 is a memory corruption vulnerability, which
allows an exploit to corrupt objects and access full memory.
By using these vulnerabilities, an exploit can bypass the Safe
Mode and eventually execute malicious VBScript code in
browsers’ sandboxes.

CVE-2016-0189 IN ACTION

ValueOf method override
The aim of this exploit is somehow to call an overridden
ValueOf method, as shown in Figure 2.

However, in order to achieve this the attacker needs to
perform a number of actions. First, the JavaScript calls a
VBScript function named ‘exploit’ by passing an object
‘o’, as seen in Figure 2. This object contains a method,
‘ValueOf’. The ValueOf function is overridden to trigger the
vulnerability. We will come back to the ‘o’ object later.

Inside the custom ‘exploit’ function

Going back to the exploit() function, we can see in Figure 3
that it creates some variables and then creates an object of
dummy class, which is nothing but a simple VBScript class.

Figure 2: JavaScript code to start the exploit execution.

Figure 3: VBScript ‘exploit’ function.

 VIRUS BULLETIN www.virusbulletin.com

JANUARY 2017 3

This dummy ‘dm’ object contains memory addresses which
will be used to overwrite the Safe Mode fl ag.

The address of the dummy object is calculated in the exploit()
function by calling the getAddr() method. Figure 4 shows the
code of the getAddr() method.

Using GetAddress to invoke overridden ValueOf

From the getAddr() function, the attacker needs somehow
to reach to the overridden ValueOf method to trigger the
bug. This is achieved by assigning an object ‘s’ to the array
(arg1, 2). Here, ‘arg1’ is the JavaScript object ‘o’, which we
discussed earlier.

To calculate the array index, the VBScript calls the ValueOf
method for this object. The ValueOf method (Figure 2) calls
the triggerBug function of the VBScript, which contains the
actual code to trigger the vulnerability.

Inside triggerBug

The code of the triggerBug function is shown in Figure 5.
The triggerBug function resizes the array length to A(1, 1),

which is smaller. This will free some memory. Crafted strings
are then created in this freed memory. The aw.A(arg1, 2) in the
getAddr function still points to the freed memory where the
dummy class object ‘s’ will be written. This allows the address
of the dummy object to be read using the crafted string.

Overwriting the Safe Mode fl ag
The CSession object address can be found from the address
of the dummy object. Figure 6 shows the code used to read
the CSession object address from the dummy object.

Figure 6: Function used to leak the address of the CSession
object and COleScript object.

Figure 4: The ‘getAddr’ function used to fi nd address of VBScript class.

Figure 5: VBScript function used to resize the array and trigger the bug.

VIRUS BULLETIN www.virusbulletin.com

JANUARY 20174

The address of the COleScript object is present in the
CSession object. The address of the COleScript object, which
contains the Safe Mode fl ag (COleScript + 0x174), as shown
in Figure 3, will be read. Finally, the Safe Mode fl ag will be
changed in the COleScript class.

Figure 7: Function used to overwrite the Safe Mode fl ag.

At this point, the Safe Mode fl ag has been changed to ‘0x4’,
and now the VBScript can be executed in the browser in the
same way as it is executed on the local shell. This allows the
exploit to download and execute a malicious payload.

CVE-2016-0189 VBSCRIPT GOD MODE
MEMORY CORRUPTION ‘IN THE WILD’

The exploit mentioned above was made publicly available as
a proof of concept (POC) by Theori.

Since then, we have observed three variants of
CVE-2016-0189 abused in the wild. These HTML pages are
mostly hosted on Korean domains, which is not a surprise
since exploits concerning Internet Explorer are often common
in South Korea where it is a very popular browser. Following
the God Mode exploitation, malware authors are taking one of
the three routes shown in the fl owchart in Figure 8.

Note that the KR variant is better known as the Gongda
exploit kit in the wild.

Variant 1: OffensiveWare generated 2016-0189

OffensiveWare Multi Exploit Builder is a cheap (US$50)
exploit generation tool which has an option to generate God
Mode HTML CVE-2016-0189 (see Figure 9). However, the
software is easy to crack and anyone with a simple tweak can
generate a working 2016-0189 without buying the licence for
this tool.

The CVE-2016-0189 generated is very much like the fi rst POC
created by Theori, as we can see from the sequence of events
happening in Figure 10 (an Internet Explorer generic process
is launched to run PowerShell, which further downloads and
runs the payload). Eventually, the tool just takes the attackers’

Figure 8: Flowchart showing the different approaches used
by malicious kits to download and launch payloads via the

CVE-2016-0189 exploit.

Figure 9: OffensiveWare tool builder.

 VIRUS BULLETIN www.virusbulletin.com

JANUARY 2017 5

website URL in a text box and simply places it in the position
required in the crafted HTML page without adding any extra
obfuscation or evasion module. A quick and easy way to earn
50 dollars per ‘customer’ without much effort.

Adoption in exploit kits

More mature exploit kits have added more content to
the basic Theori POC to make their content undetectable
both statically and dynamically. Static detection evasion
is attempted by using obfuscation to hide obvious strings
related to the exploit (Figure 11).

Evasion of behavioural detection has been handled by
the Gongda and RIG exploit kits in two separate ways, as
discussed below.

Variant 2: Gongda exploit kit – PowerShell coupled
with BITSAdmin to avoid behavioural detection

Using BITSAdmin in addition to PowerShell helps to add an

extra layer of protection against behavioural monitoring as the
payload will be created by svchost.exe and not PowerShell.
This means that behaviour-based security software, which
looks for fi le creation via PowerShell, can be bypassed.

This has already been seen in the case of a Cerber
ransomware campaign where the evasion code was placed
inside the macro, and now we see an exploit-generated attack
using it [4], as shown in Figure 12.

Variant 3: 2016-0189 in RIG exploit kit

The RIG exploit kit goes one step further as it fi rst renames
wscript.exe (Figure 13), so that any behaviour-based security
software monitoring for wscript.exe via fi lename is bypassed.
The sequence can be broken down into four steps, as follows:

• Post exploitation, Internet Explorer launches the
command line.

• The command line changes the name of wscript.exe to
script.pif or wscript.com.

Figure 10: Internet Explorer launching PowerShell to download and run payload.

Figure 11: PowerShell commands obfuscated in exploit kits using CVE-2016-0189.

Figure 12: Gongda using BITSAdmin coupled with PowerShell.

Figure 13: Wscript.exe renaming in RIG 2016-0189.

VIRUS BULLETIN www.virusbulletin.com

JANUARY 20176

Editor: Martijn Grooten

Chief of Operations: John Hawes

Security Test Engineers: Scott James, Tony Oliveira, Adrian Luca,
Ionuţ Răileanu, Chris Stock

Sales Executive: Allison Sketchley

Editorial Assistant: Helen Martin

Developer: Lian Sebe

Consultant Technical Editor: Dr Morton Swimmer

© 2017 Virus Bulletin Ltd, The Pentagon, Abingdon Science
Park, Abingdon, Oxfordshire OX14 3YP, England
Tel: +44 (0)1235 555139 Email: editor@virusbulletin.com
Web: https://www.virusbulletin.com/

• Script.pif (which is in fact wscript.exe) is launched by
the command line to further launch JavaScript.

• The JavaScript checks for the payload format and runs it.

CONCLUSION
After a good run in 2016, the usage of this exploit is expected
to decrease, as it was patched by Microsoft some time ago.
Furthermore, the future of such potential zero-day God Mode
exploits, which can run VBScript outside the sandbox, looks
bleak, as Microsoft has decided not to support VBScript itself
in Microsoft IE 11 edge mode [5]. Nevertheless, this exploit
is expected to exist for some time longer in IE versions that
continue to support VBScript.

From a detection perspective, static detection has the
potential to be bypassed, as we have seen with exploit
kits that have obfuscated the original POC. However, one
can detect such threats by using behaviour-based alerts
that trigger when Internet Explorer accesses the shell and
performs an activity it is not generally supposed to perform.

REFERENCES
[1] CVE-2016-0189 original release by Theori.

https://github.com/theori-io/cve-2016-0189.

[2] Internet Explorer zero-day exploit used in targeted
attacks in South Korea. https://www.symantec.com/
connect/blogs/internet-explorer-zero-day-exploit-
used-targeted-attacks-south-korea.

[3] A Killer Combo: Critical Vulnerability and
‘Godmode’ Exploitation on CVE-2014-6332.
http://blog.trendmicro.com/trendlabs-security-
intelligence/a-killer-combo-critical-vulnerability-
and-godmode-exploitation-on-cve-2014-6332/.

[4] The Journey of Evasion Enters Behavioural Phase.
https://www.virusbulletin.com/virusbulletin/2016/07/
journey-evasion-enters-behavioural-phase/.

[5] VBScript is no longer supported in IE11 edge
mode. https://msdn.microsoft.com/en-us/library/
dn384057(v=vs.85).aspx.

APPENDIX

SHA 256 hash Description

e4326798f7e97f6ecd7f20c158d2
9cf665248fb1de9849513d798cad
925149d4

2016-0189 Gongda
exploit kit using
BITSAdmin
behavioural evasion

3693580312cdbb83c27af51c71e0
077a7f8a87bddaf6905668791705
9edf966b

2016-0189
OffensiveWare builder

757bd69fedd7e81d1f3bb31021e9
c3d542018eb295c53221134e4c6c
3eb5a6b6

2016-0189 Neutrino
using wscript.exe
renaming evasion

