
The International PublicationThe International PublicationThe International PublicationThe International PublicationThe International Publication
on Computer Virus Prevention,on Computer Virus Prevention,on Computer Virus Prevention,on Computer Virus Prevention,on Computer Virus Prevention,
Recognition and RemovalRecognition and RemovalRecognition and RemovalRecognition and RemovalRecognition and Removal

JANUARY 2005

CONTENTS IN THIS ISSUEIN THIS ISSUEIN THIS ISSUEIN THIS ISSUEIN THIS ISSUE

IS
S

N
 0

95
6-

99
79

GOING RETROGOING RETROGOING RETROGOING RETROGOING RETRO
Remember when Robert
Palmer was Addicted to
Love, Dire Straits were
doing the Walk of Life and
Lionel Richie was

Dancing on the Ceiling? In 1986, Sir Richard
Branson beat the Atlantic speed record, Prince
Andrew married Sarah Ferguson and Sir Clive
Sinclair sold his computer business to rival
Amstrad. Meanwhile, in the AV world, C64/BHP.A
quietly became the first full stealth file-infecting
virus. Dust off your stone-washed jeans, get out
your fingerless gloves and prepare to go retro!
page 4page 4page 4page 4page 4

THREE-FTHREE-FTHREE-FTHREE-FTHREE-FACED MACROSACED MACROSACED MACROSACED MACROSACED MACROS
Macros written in Visual Basic for Applications
have three very different forms, any of which can be
the one that is executed. To illustrate why this poses
a problem, Dr Vesselin Bontchev lets us in on some
of his specialist knowledge of macro viruses.
page 12page 12page 12page 12page 12

2 COMMENTCOMMENTCOMMENTCOMMENTCOMMENT

The buck stops here, there, everywhere

3 NEWSNEWSNEWSNEWSNEWS

Test files: straightening the record

Synchronized malware identification for
the new year

3 VVVVVIRUS PREVIRUS PREVIRUS PREVIRUS PREVIRUS PREVALENCE TABLEALENCE TABLEALENCE TABLEALENCE TABLEALENCE TABLE

VIRUS ANALVIRUS ANALVIRUS ANALVIRUS ANALVIRUS ANALYSESYSESYSESYSESYSES

4 Time machine

6 Reduce, reuse, recycle: W32/Orpheus.A

FEAFEAFEAFEAFEATURESTURESTURESTURESTURES

9 Are metamorphic viruses really invincible?
Part 2

12 The three faces of VBA: Part 1

18 CALL FOR PCALL FOR PCALL FOR PCALL FOR PCALL FOR PAPERSAPERSAPERSAPERSAPERS

VB2005 Dublin

19 CONFERENCE REPORCONFERENCE REPORCONFERENCE REPORCONFERENCE REPORCONFERENCE REPORTTTTT

AVAR 2004: Eutaxy or chaos?

20 END NOTES & NEWSEND NOTES & NEWSEND NOTES & NEWSEND NOTES & NEWSEND NOTES & NEWS

This month: anti-spam news & events; John
Graham-Cumming looks at the content obfuscation
techniques of a spam program; and we review
O’Reilly’s Spam Kings.

22222 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

COMMENT

Editor:Editor:Editor:Editor:Editor: Helen Martin

TTTTTechnical Consultant:echnical Consultant:echnical Consultant:echnical Consultant:echnical Consultant: Matt Ham

TTTTTechnical Editor: echnical Editor: echnical Editor: echnical Editor: echnical Editor: Morton Swimmer

Consulting Editors:Consulting Editors:Consulting Editors:Consulting Editors:Consulting Editors:
Nick FitzGerald, Independent consultant, NZ
Ian Whalley, IBM Research, USA
Richard Ford, Florida Institute of Technology, USA
Edward Wilding, Data Genetics, UK

THE BUCK STOPS HERE,THE BUCK STOPS HERE,THE BUCK STOPS HERE,THE BUCK STOPS HERE,THE BUCK STOPS HERE,
THERE, EVERTHERE, EVERTHERE, EVERTHERE, EVERTHERE, EVERYWHEREYWHEREYWHEREYWHEREYWHERE
Opening an email inbox first thing in the morning is one
of the most stressful aspects of living in the 21st century.
For one third of us this means facing a slew of email of
which half is spam, according to a recent MORI poll.
Add to that the concerns over malware and you have a
headache we could all do without.

Users are faced with a plethora of firewall, anti-virus and
anti-spam software, as well as a constant stream of
patches and fixes, all to allow us to communicate safely.
It is no wonder that people want to know who should
hold ultimate responsibility for ensuring that our lives
are virus free.

Against a background of growing cybercrime that
already stretches government and police manpower and
budgets, ISPs have begun integrating anti-virus solutions
and spam blockers, whilst banks have had little choice,
in the wake of recent phishing scams, but to place the
responsibility for securing communications firmly on the
shoulders of the users.

It seems that combating viruses and spam is still left to
the individual business or home user. This is becoming
an increasingly difficult task, and currently only one

third of users trust that their anti-virus software will
protect them when an attack comes (MORI).

Simply put, no single group has been willing to take the
responsibility for preventing virus and spam traffic on
the Internet. The MORI research indicates clearly where
most users feel the responsibility lies: only 4 per cent felt
it should be up to the individual, and whilst 10 per cent
believed the government had a leading role to play, the
majority (58 per cent) of those questioned said they
would like their ISP to provide additional security
services to protect them from spam, viruses and
offensive content on the Internet.

But before the ISPs start to sweat, they should consider
the advantages such a policy could deliver. Most of
those questioned in the poll said they would be happy
to pay a further £2 or more on top of their monthly
Internet access charges to guarantee a clean Internet
service. Critically, two thirds of respondents said they
would switch service provider if an alternative provider
offered protection capabilities as part of their Internet
access portfolio.

As any army general would tell you, the best place to
form a front line of defence is the place furthest away
from the things you are trying to protect. Defend too
close and you run the risk that the enemy will break
through, leaving you with no defences at all. The best
place to stop threats coming from the Internet, therefore,
is in the Internet itself.

In the early days of the water industry people were so
concerned about the water quality that they boiled it
before use. Today, all water companies clean their water
before delivery, and users know it is safe to drink straight
out of the pipe. This is a model the ISPs need to emulate.

The first steps towards Internet-based content security
have already been made by consumer ISPs offering
anti-virus and anti-spam protection for their own email
services, but this technology is already being
outstripped. ISPs need to consider self-propagating
worms that infect systems, embedded viruses that
download from web pages, viruses in files downloaded
directly from the Internet such as in peer-to-peer file
sharing services, and instant messaging and text
messaging spam. A good ISP will demonstrate
responsibility for preventing all these threats.

All-encompassing Internet-based content security is the
holy grail of many businesses and individuals that are
struggling to defend themselves against the onslaught of
attacks from the Internet. As technology makes these
capabilities an affordable reality, it is clear that the ISPs
must respond to market demands and finally accept
responsibility for securing the Internet for all.

‘People want to
know who should
hold ultimate
responsibility for
ensuring that our
lives are virus free.’
AndrAndrAndrAndrAndrew Radleyew Radleyew Radleyew Radleyew Radley,,,,,
StrStrStrStrStreamShieldeamShieldeamShieldeamShieldeamShield Networks,Networks,Networks,Networks,Networks, UKUKUKUKUK

33333JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

VIRUS BULLETIN www.virusbtn.com

Prevalence Table – November 2004

Virus Type Incidents Reports

Win32/Netsky File 104,451 50.95%

Win32/Bagle File 64,526 31.48%

Win32/Sober File 29,131 14.21%

Win32/Bagz File 1,601 0.78%

Win32/Mydoom File 943 0.46%

Win32/Mabutu File 936 0.46%

Win32/Dumaru File 744 0.36%

Win32/Zmist File 619 0.30%

Win32/Funlove File 585 0.29%

Win32/Zafi File 371 0.18%

Win32/Klez File 262 0.13%

Win32/Valla File 116 0.06%

Win32/MyWife File 87 0.04%

Win32/Parite File 86 0.04%

Win32/Bugbear File 85 0.04%

Win32/Lovgate File 75 0.04%

Win95/Spaces File 63 0.03%

Win32/Pate File 52 0.03%

Win32/Mimail File 44 0.02%

Win32/Kriz File 40 0.02%

Win32/Swen File 37 0.02%

Win95/Tenrobot File 29 0.01%

Win32/Elkern File 21 0.01%

Win95/CIH File 16 0.01%

Win32/SirCam File 10 0.00%

Win32/Evaman File 9 0.00%

Win32/Torvil File 8 0.00%

Win95/Kuang File 8 0.00%

Psyme Script 6 0.00%

Win32/Magistr File 6 0.00%

IEStart Script 4 0.00%

Win32/Hybris File 4 0.00%

Others[1] 21 0.01%

Total 204,996 100%

[1]The Prevalence Table includes a total of 21 reports across
15 further viruses. Readers are reminded that a complete
listing is posted at http://www.virusbtn.com/Prevalence/.

TESTTESTTESTTESTTEST FILES:FILES:FILES:FILES:FILES: STRAIGHTESTRAIGHTESTRAIGHTESTRAIGHTESTRAIGHTENINNINNINNINNINGGGGG THETHETHETHETHE RECORDRECORDRECORDRECORDRECORD
Andreas Clementi, of the University of Innsbruck, has asked
VB to set the record straight regarding the collection of files
referenced in Peter Morley’s letter ‘Generic detection – a
specific case’ (see VB, December 2004, p.14). In his letter,
Peter writes: ‘McAfee received (from Andreas Clementi
of the University of Innsbruck) a collection of some 1,350
*.HTM files … Should we detect these files, for any reason
other than the fact that we may be reviewed against them?’
Andreas says: ‘None of those files were, are, or will be
used in my tests – but the matter is out of my hands should
any other reviewer use any of the files by mistake or
through ignorance. I stated clearly when I sent the files
that none of the files are used for my tests.’ Consider the
record straightened.

SYNCHRONIZED MALSYNCHRONIZED MALSYNCHRONIZED MALSYNCHRONIZED MALSYNCHRONIZED MALWWWWWAREAREAREAREARE
IDENTIFICAIDENTIFICAIDENTIFICAIDENTIFICAIDENTIFICATION FOR THE NEW YEARTION FOR THE NEW YEARTION FOR THE NEW YEARTION FOR THE NEW YEARTION FOR THE NEW YEAR
Causing a stir in the anti-virus community last month was
the announcement of a new US-led initiative whose aim is
to achieve threat synchronization.

The US Department of Homeland Security’s Computer
Emergency Readiness Team, US-CERT, is set to
coordinate a Common Malware Enumeration (CME)
initiative, according to a letter sent to the SANS Institute
and signed by representatives of the DHS, Symantec,
Microsoft, McAfee, and Trend Micro. Rather like Mitre
Corp’s Common Vulnerabilities and Exposures (CVE) list,
US-CERT plans to maintain and coordinate a database of
malware identifiers.

The letter stated: ‘By building upon the success of CVE and
applying the lessons learned, US-CERT, along with industry
participants ... hopes to address many of the challenges that
the anti-malware community currently faces.’ The letter
acknowledged that the task would not be a straightforward
one, saying: ‘There are significant obstacles to effective
malware enumeration, including the large volume of
malware and the fact that deconfliction [sic] can be difficult
and time-consuming.’

With such an enormous task ahead, the enumeration project
will make a start with just the ‘major’ threats. The initial
proposal, therefore, is for representatives of the companies
involved to forward samples that are submitted to AVED
(Anti-Virus Emergency Discussion network) to US-CERT,
allowing US-CERT to generate a CME number for each
new threat.

Participants in the initiative acknowledge that this is not an
‘end-all’ solution to the malware-naming problem, but
represents a helpful step forward. VB awaits the introduction
of the scheme with interest.

NEWS

VIRUS BULLETIN www.virusbtn.com

44444 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

TIME MACHINETIME MACHINETIME MACHINETIME MACHINETIME MACHINE
Peter Ferrie
Symantec Security Response, USA

It is commonly reported that the first known full stealth
file-infecting virus was Frodo, in 1989. In fact, that is true
only for the IBM PC world. The Commodore 64 world had
been infected three years earlier by what was perhaps truly
the first full stealth file-infecting virus: C64/BHP.A (not to
be confused with the boot-sector virus for the Atari, also
known as BHP).

All of the descriptions of BHP that were published at the
time were inaccurate, some of them even giving incorrect
descriptions of how the infection worked. This article takes
a look at what it really did.

BASIC INSTINCTBASIC INSTINCTBASIC INSTINCTBASIC INSTINCTBASIC INSTINCT
As with all Commodore 64 programs, BHP began with
some code written in Basic. This code consisted of a single
line, a SYStem [sic] call to the assembler code, where the
rest of the virus resided. Unlike many programs, the virus
code built the address to call dynamically. This implies that
the virus was perhaps written by a very careful coder, but it
proved to be unnecessary because the address did not
change in later versions of the machine.

Once the assembler code gained control, it placed itself in
the block of memory that was normally occupied by the I/O
devices when the ROM was banked-in.

At this point, it is necessary to describe some of the
Commodore 64 architecture in more detail.

DOWN MEMORDOWN MEMORDOWN MEMORDOWN MEMORDOWN MEMORY LANEY LANEY LANEY LANEY LANE
The Commodore 64 used a MOS 6510 CPU, a later version
of the MOS 6502 chip used by several competing machines
of the time, including the Apple II series and the Atari 400
and 800.

Since the 6502’s data bus (and therefore the 6510’s
data bus) was only 16 bits wide, the maximum directly
addressable memory range was 64kb. In order to
accommodate more memory, a ‘banking’ architecture was
implemented, allowing different memory regions to be
mapped in under the user’s control, simply by writing the
appropriate value to a specific memory-mapped port.

NOW YOU SEE ME ...NOW YOU SEE ME ...NOW YOU SEE ME ...NOW YOU SEE ME ...NOW YOU SEE ME ...
The Commodore 64 allowed quite a large address space in
comparison with other machines at that time: potentially

eight banks of 64kb (a total of 512kb!) of memory were
available, though most machines did not have the chips
installed to provide that much.

Since the mapped regions all needed to be within the 64kb
range, a few memory ranges provided the base for all of the
banked memory, in order to give the maximum amount of
memory that would always be available. This greatly
reduced the complexity of the average program.

On the other hand, however, several steps were required for
a program that ran in one memory bank to access data in
another memory bank. The first step was to place code in
non-banked memory and run it. The next steps were for that
code to bank out the program, bank in the required data,
access that data and save them, then bank out the data, bank
in the program again, restore the data, and return control to
the program.

............... NOW YOU DON’TNOW YOU DON’TNOW YOU DON’TNOW YOU DON’TNOW YOU DON’T
A side effect of memory banking was that it was a great way
to hide a program, since the program was not visible if its
memory was not banked in. This is the reason why BHP
placed its code in banked memory.

After copying itself to banked memory, the virus restored
the host program to its original memory location and
restored the program size to its original value. This allowed
the host program to execute as though it were not infected.
However, at this time the virus would verify the checksum
of the virus’s Basic code, and would overwrite the host
memory if the checksum did not match.

An interesting note about the checksum routine is that it
missed the first three bytes of the code, which were the line
number and SYS command. This made the job easier for the
person who produced the later variant of the virus. Although
the later variant differed only in the line number, this was
sufficient to defeat the BHP-Killer program, because
BHP-Killer checked the entire Basic code, including the
line number.

CAPTCAPTCAPTCAPTCAPTAIN HOOKAIN HOOKAIN HOOKAIN HOOKAIN HOOK
The virus checked whether it was running already by
reading a byte from a specific memory location. If that
value matched the expected value, the virus assumed that
another copy was running. Thus, writing that value to that
memory location would have been an effective inoculation
method. Similar methods were used against viruses for the
Commodore Amiga machines.

If no other copy of the virus was running, the virus would
copy some code into a low address in non-banked memory,
and hook several vectors, pointing them to the copied code.

VIRUS ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

55555JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

Specifically, it hooked the ILOAD, ISAVE, MAIN, NMI,
CBINV and RESET vectors.

The hooking of MAIN, NMI, CBINV and RESET made the
virus Break-proof, Reset-proof, and Run/Stop-Restore-proof.
These hooks ensured that the virus did not lose control
while the machine restarted. This technique was similar to
the Ctrl-Alt-Delete hooks that were used later in DOS
viruses on the IBM PCs, or the Ctrl-Amiga-Amiga hooks
that viruses used on the Commodore Amiga.

Once the hooks were in place, the virus ran the host code.
The main virus code would be called on every request to
load or save a file.

HEAHEAHEAHEAHEAVY LOADVY LOADVY LOADVY LOADVY LOAD

The ILOAD hook was reached when a disk needed to be
searched. This happened whenever a directory listing was
requested, and could happen when a search was made using
a filename with wildcards, or the first time that a file was
accessed. Otherwise, the drive hardware cached up to 2kb of
data and returned it directly.

The virus called the original ILOAD handler, then checked
whether an infected program had been loaded. If an infected
program had been loaded, the virus restored the host
program to its original memory location and restored the
program size to its original value. Otherwise, even if no file
had been loaded, the virus called the infection routine.

DON’T FORGET TO SADON’T FORGET TO SADON’T FORGET TO SADON’T FORGET TO SADON’T FORGET TO SAVEVEVEVEVE

The ISAVE hook was reached whenever a file was saved.
The virus called the original ISAVE handler to save the file,
then called the infection routine.

The infection routine began by checking that the requested
device was a disk drive. If so, then the virus opened the first
file in the cache. The first file in the cache would be the
saved file if this code was reached via the ISAVE hook,
otherwise it would be the first file in the directory listing.

If the file was a Basic program, then the virus performed a
quick infection check by reading the first byte of the
program and comparing it against the SYS command. The
virus read only one byte initially, because disk drives were
serial devices on the Commodore 64, and therefore very
slow. However, if the SYS command was present, the
virus verified the infection by reading and comparing up to
27 subsequent bytes. A file was considered infected if all 27
bytes matched.

If the file was not infected, the virus switched to reading
data from the hardware cache. The first check was for a
standard disk layout: the directory had to exist on track 18,

sector 0, and the file to be infected had not to have resided
on that track.

LESS TLESS TLESS TLESS TLESS TALK, MORE ACTIONALK, MORE ACTIONALK, MORE ACTIONALK, MORE ACTIONALK, MORE ACTION

If these checks passed, the virus searched the track list for
free sectors. It began with the track containing the file to be
infected, then moved outwards in alternating directions.
This reduced the amount of seeking that the drive had to
perform in order to read the file afterwards, and was a very
interesting optimisation, given that some multi-sector boot
viruses on the IBM PC placed their additional code at the
end of the disk, leading to very obvious (read: audible)
seeking by the drive.

If at least eight free sectors existed on the same track, then
the virus allocated eight sectors for itself and updated the
sector bitmap for that track. The code to update the sector
bitmap was beautiful, allocating the sectors and creating the
list of sector numbers at the same time. The code could have
been shortened slightly, though, by reordering some of the
instructions.

This was the case throughout the virus – overall, the code
was very tight (as it needed to be), but there were some
pieces of code that could have been optimised in very
obvious (and some less obvious) ways. There were also a
couple of harmless bugs. However, given the size of the
code, the only resulting advantage would have been that the
payload (see below) could have contained a longer message
or more effects.

By comparison, the code used to write the virus to the disk
was a horrible mess – suggesting, perhaps, that it was
written by a co-author. The virus wrote itself to disk in the
following manner: the first sector of the host was copied to
the last sector allocated by the virus, then that first sector

Figure 1. BHP’s payload. The text was displayed one character at a
time, while the colours of the border cycled.

VIRUS BULLETIN www.virusbtn.com

66666 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

REDUCE, REUSE, RECYCLE:REDUCE, REUSE, RECYCLE:REDUCE, REUSE, RECYCLE:REDUCE, REUSE, RECYCLE:REDUCE, REUSE, RECYCLE:
W32/ORPHEUS.AW32/ORPHEUS.AW32/ORPHEUS.AW32/ORPHEUS.AW32/ORPHEUS.A
John Canavan
Symantec, Ireland

The building of generic objects and structures for optimum
code reuse is a goal of software developers throughout
the IT industry. Effective reuse of code can significantly
speed up development time, ease debugging and result
in more consistent-looking and reliable applications. And
it seems that even virus writers have recognised the
benefits of reusing code – in recent times they have made
an art of hacking together pieces of stolen code to suit
their objectives.

With code available on the Internet for threats like Gaobot,
Spybot and Beagle, we have seen thousands of samples that
have been tailored specifically to fulfil the desires of
script-kiddies.

Taking a unique perspective on code reuse, one of the latest
of these Frankenstein creations is W32/Orpheus.A.

MYTHOLOGYMYTHOLOGYMYTHOLOGYMYTHOLOGYMYTHOLOGY

In ancient Greek mythology Cerberus was the gruesome
many-headed dog that guarded the gates of Hades, the
realm of the dead. Stories tell of two men great enough to
have passed him, one of whom was Orpheus. When his wife
died (having been bitten by a poisonous snake on their
wedding day), Orpheus used his musical abilities to charm
the savage dog, and make his way to Hades to claim back
his wife.

W32/Orpheus.A does not have the musical charm of its
namesake, however. Instead, it bypasses the computer
system’s watchdogs by using advanced rootkit techniques
such as API patching and DLL injection.

The lion’s share of the worm’s code is taken from a publicly
available Romanian DLL injection-based rootkit known
as Vanquish, written by ‘xShadow’. Hacked together with
this, Orpheus makes use of named pipes for its backdoor
communication, and uses the output of the system command
‘net view’ for enumeration of network resources during
its propagation.

The original Vanquish rootkit comprised a DLL containing
the main functionality of the rootkit and a small executable
used to load it. The author of W32/Orpheus.A kept this
model, but added some extra bells and whistles to the
executable in an attempt to make it more difficult to remove
from the infected system. An analysis of both modules of
W32/Orpheus.A follows.

VIRUS ANALYSIS 2
was replaced by the first sector of the virus. After that,
the remaining virus code was written to the remaining
allocated sectors.

The directory stealth was present here, and it existed
without any effort on the part of the virus writer(s). It was
a side effect of the virus not updating the block count in the
directory sector. The block count was not used by DOS to
load files, its purpose was informational only, since it was
displayed by the directory listing.

In fact, the same problem existed on DOS for the Apple II
series of machines and such a virus would have been much
easier to write there, since communication with the hardware
is much simpler on those machines. The only obvious effect
in the case of BHP was that the number of free blocks on
the disk was visibly reduced, because the value was
calculated using the sector bitmap, not the directory listing.

PPPPPAAAAAYLOADYLOADYLOADYLOADYLOAD

After any call to ILOAD or ISAVE, the virus checked
whether the payload should activate. The conditions for
the payload activation were the following: that the machine
was operating in ‘direct’ mode (the command-prompt),
that the seconds field of the jiffy clock was a value from
2–4 seconds, and that the current scan line of the vertical
retrace was at least 128. This made the activation fairly
random. The payload was to display a particular text, one
character at a time, while cycling the colours of the border
(see Figure 1).

The serial number that was displayed was the number of
times the payload check was called. It was incremented
once after each call, and it was carried in replications. It
reset to zero only after 65,536 calls.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

So now we know: BHP was a virus ahead of its time.

C64/BHP.A

Size: 2030 bytes.

Type: Memory-resident parasitic
prepender.

Infects: Commodore 64 Basic files.

Payload: Displays text under certain
conditions.

Removal: Delete infected files and restore
them from backup.

VIRUS BULLETIN www.virusbtn.com

77777JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

HOTPLUG.EXEHOTPLUG.EXEHOTPLUG.EXEHOTPLUG.EXEHOTPLUG.EXE
Hotplug.exe is the executable stub of W32/Orpheus.A. It is
used to create services so that the virus is executed on
system startup, and starts the DLL module of the virus by
thread injection.

Upon execution, Orpheus checks the following registry
value:

HKEY_LOCAL_MACHINE\Software\Cerberus\1.1\
“dontInstall” = “1”

If this value is present, the worm performs a basic uninstall
routine, which attempts to stop and delete the ‘Hotplug’
service. If the value is not present, Orpheus proceeds to
copy itself to the System directory of the infected host as
‘Hotplug.exe’.

Orpheus also attempts to move its associated DLL to
%System%\ntadint.dll, or to %System%\msvcr71.dll if
the first fails. Hotplug.exe expects its DLL component to
be present in the root directory of the drive from which it
is executing.

Orpheus then makes the first of its clever social engineering
moves. The worm creates a service named Hotplug,
assigning it the following description:

‘Enables automated driver loading for hotpluggable
devices, including USB, FireWire and Hotplug PCI
systems. If this service is stopped, hotplug devices will no
longer function. If this service is disabled, any services
that explicitly depend on it will fail to start.’

Orpheus then adds a DependOnService hook to the
PlugPlay service key

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\PlugPlay\“DependOnService”=“hotplug”’

This ensures that the Hotplug service is loaded successfully
before Microsoft Plug n Play services are initiated. The
Hotplug service will also show up in the Dependencies tab
of the Services Management Console for each of the
service’s properties, thus lending it further legitimacy.

Using CreateToolhelp32Snapshot, Process32First, and
Process32Next, Orpheus iterates through the process list
searching for ‘lsass’. When a match is found the worm
attempts to load its DLL into the matched process.

The most common means of DLL injection is through the
use of the CreateRemoteThread() API. However, Orpheus
implements a more innovative method: it uses register
settings gathered from GetThreadContext() to force code
execution. As is evident from the name of the mutex that is
created during injection (‘VanquishAutoInjectingDLL’),
this portion of the code has been lifted from the Vanquish
rootkit package.

After finding a process to infiltrate, Orpheus uses
OpenProcess() and a ReadProcessMemory() call to find the
ThreadID of the first thread in this process. The thread is
then suspended and 0x2f bytes of memory are allocated
within LSASS. The worm then calls GetThreadContext(),
and learns the values of the registers EAX, EBX, ECX,
EDX, ESI and EDI as well as the stack pointers (ESP, EBP)
and the instruction pointer (EIP) from the returned
CONTEXT structure.

Orpheus then uses this information to write the following
code and data to the newly allocated 0x2f byte buffer in
LSASS:

“szNTADINT.dll”

pushad

push <szNTADINT_dll>

mov esi, <LoadLibraryW>

call esi

popad

ret

This is the equivalent of calling LoadLibrary(“NTADINT.dll”).

If the buffer write succeeds, Orpheus must adjust the stack
so that execution is not interrupted after the injected virus
code has been run. This is achieved by adding the value of
the thread CONTEXT instruction pointer, our new return
address, to the stack. EIP is then set to the address of the
0x2F byte buffer just after the ‘NTADINIT.DLL’ string,
so that the injected code is executed immediately once
the thread resumes. Loose ends are then tied up as Orpheus
updates the thread CONTEXT with the new values of ESP
and EIP using SetThreadContext(), and the thread is resumed.

Before exiting Hotplug.exe will enumerate through all
windowed processes using EnumWindows(), attempting to
inject NTADINT.DLL into each.

NTNTNTNTNTADINTADINTADINTADINTADINT.DLL.DLL.DLL.DLL.DLL

Ntadint.dll contains the main functionality of
W32/Orpheus.A. It patches APIs to hide itself, hosts the
worm’s backdoor functionality, logs keystrokes and
attempts to spread to other vulnerable hosts on the network.

Initially executed by injection, ntadint.dll proceeds to patch
34 important system APIs in an attempt to hide its presence
on the system.

API PAAPI PAAPI PAAPI PAAPI PATCHING – TRAMPOLININGTCHING – TRAMPOLININGTCHING – TRAMPOLININGTCHING – TRAMPOLININGTCHING – TRAMPOLINING

The effective API replace is done by overwriting the first
five bytes of the API prologue with a 32-bit offset
unconditional jmp to the new patched API that lives in the
injected DLL (ntadint.dll).

VIRUS BULLETIN www.virusbtn.com

88888 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

First, Orpheus sets the access protection on the first 0xB
bytes at the address of the API to be patched to
PAGE_EXECUTE_READWRITE.

Once this is complete, the worm saves the first five bytes of
the API for later use (they will need to be used when the
API is called) and replaces them with the jump to its
trampoline function. Finally, FlushInstructionCache() is
called, as even though the instructions have changed in
memory, old code may still run from the cache.

Each trampoline function contains code that will restore
the first five bytes of the API, in a manner similar to that
of the initial patch, and executes the clean version if
required.

Patched API calls are filtered based on the arguments
provided to hide the processes, files and registry settings
associated with the worm. Orpheus will also attempt to
inject ntadint.dll into the calling process of the patched API,
using the DLL injection technique described above.

The APIs Orpheus has chosen to patch are selected carefully
to make it as difficult as possible to remove the virus from
the system. They are as follows:

CreateProcessA CreateProcessW

LoadLibraryExW FreeLibrary

CreateProcessAsUserA CreateProcessAsUserW

FindFirstFileExW FindNextFileW

RegCloseKey RegEnumKeyW

RegEnumKeyA RegEnumKeyExW

RegEnumKeyExA RegEnumValueW

RegEnumValueA RegOpenKeyExW

RegQueryValueExW EnumServicesStatusW

EnumServicesStatusA DispatchMessageW

DispatchMessageA GetMessageW

GetMessageA LogonUserA

RegQueryMultipleValuesA LogonUserW

RegQueryMultipleValuesW WlxLoggedOutSAS

The patched versions of these APIs allow the worm to hide
the presence of its files, services and associated registry
keys so that, essentially, it will be invisible both to the user
and to any security products monitoring the system.

SO LONG, AND THANKS FOR ALLSO LONG, AND THANKS FOR ALLSO LONG, AND THANKS FOR ALLSO LONG, AND THANKS FOR ALLSO LONG, AND THANKS FOR ALL
THE FISH!THE FISH!THE FISH!THE FISH!THE FISH!

When the worm is injected into Explorer.exe, it opens a
back door on the system to accept unauthorised remote
connections. The most orthodox backdoor is a bound and
listening TCP port. However, following a technique

pioneered by Backdoor.Fluxay, Orpheus uses a named pipe
to accept its commands.

The worm creates the following named pipe and enables it
to wait for a client process to connect by using
ConnectNamedPipe():

\\.\pipe\cb_win_nt_proc_rpc_[current process id]

The current process id is retrieved using
GetCurrentProcessID() before the pipe is created. Tellingly,
however, the worm does nothing to notify the author of this
pipe name or the machine’s IP address.

The remote user can connect to the backdoor using
CreateFile() or CallNamedPipe() and once connected has
access to the following commands:

version Responds with ‘Cerberus 1.1’.

details Responds ‘##Master, I am here to serve
you...’.

newuser Creates a new user on the system.

changepassword Changes an account password on the
system.

deleteuser Deletes an account from the system.

clearsystemlog Clears the system log –
OpenEventLogA(), ClearEventLogA().

showvanquishlog Shows the debugging logfile
generated.

showkeylog Shows the keystroke log.

clearkeylog Clears the keystroke log.

clearvanquishlog Clears its own log.

remoteinstall Attempts to infect a specified remote
machine via network shares.

exec Executes a specified command –
CreateProcessA().

shellexec Executes a specified command – cmd /
C start [command].

killhost Terminates a specified process.

insecure Sets ACLs on drives C through G so
that everyone has full control access.
Sets up open shares of drives C
through G. Uses cacls and net share
commands.

doshost Performs a basic DoS attack on the
infected host – enters a recursive
infinite loop creating threads which
attempt to allocate a 100,000 byte
block of memory on the heap and
initialise each byte to 0xff.

VIRUS BULLETIN www.virusbtn.com

99999JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

exit Responds ‘So long, and thanks for all
the fish!’, disconnects the named pipe
and ends the backdoor process.

KEYLOGGINGKEYLOGGINGKEYLOGGINGKEYLOGGINGKEYLOGGING
As well as using its patched APIs to grab user login details
the worm also sets a system-wide hook to monitor
keystrokes. Each keystroke is recorded with the currently
logged-in username, current time, and the active process.

If the active process is Internet Explorer, Orpheus also
attempts to log the window title retrieved using
GetClassName(). Logged keystrokes are stored in the file
c:\irdos.sys.

NETWORK PROPNETWORK PROPNETWORK PROPNETWORK PROPNETWORK PROPAGAAGAAGAAGAAGATIONTIONTIONTIONTION
The worm’s propagation routine iterates through each of the
domains gathered from the output of ‘net view /domain’. If
the worm determines it has admin rights on the domain it
will begin attempting to connect to listed hosts.

The remote installation procedure will copy ntadint.dll and
hotplug.exe to the target host, dropping copies to both the
system directory and the root C and D drives. It will then
use the service control manager to create the services
‘Hotplug Devices Manager’ and ‘Microsoft Windows
Hotplug Service’ so that they are executed on startup.

This method of infection means that the worm will spread
very quickly if it is run on a domain with admin rights, but
without any significant rise in network traffic. There is no
pinging of random IPs or sending of the worm
unnecessarily – however, in such a situation it is not likely
to spread outside the context of that organisation.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION
The advanced DLL injection and API patching techniques
demonstrated by W32/Orpheus.A mean that it would be
extremely difficult to detect and remove the worm from an
infected system if it were not caught before it was executed.

Its injection routines would allow it to bypass easily any
system firewalls installed with outbound connections
appearing to come from explorer.exe, lsass.exe or whatever
executable the DLL is loaded in, and its patching techniques
ensure its files are hidden comprehensively from the user –
and, indeed, from most corporate anti-virus products.

Unless efficient memory scanning and rootkit bypass
mechanisms are incorporated into anti-virus products in the
near future, threats like W32/Orpheus.A will be able to have
free run of the hapless users’ systems, and indeed their
entire networks.

ARE METARE METARE METARE METARE METAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSESAMORPHIC VIRUSES
REALLREALLREALLREALLREALLY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PARY INVINCIBLE? PART 2T 2T 2T 2T 2
Arun Lakhotia, Aditya Kapoor, Eric Uday
University of Louisiana at Lafayette, USA

Metamorphic viruses thwart detection by signature-based
(static) AV technologies by morphing their code as they
propagate. The viruses can also thwart detection by
emulation-based (dynamic) technologies. To do so they
need to detect whether they are running in an emulator
and change their behaviour. So, are metamorphic viruses
really invincible?

In part one of this article (see VB, December 2004 p.5) we
presented an overview of mutation engines, followed by a
discussion of the Achilles’ heel of a metamorphic virus: its
need to analyse itself. In this part of the article we present
a case study in which we look at the metamorphic engine
of the virus W32/Evol. This leads to a discussion on
developing ‘reverse morphers’ to undo the mutations
performed by a mutation engine. The article closes with
our conclusions.

W32/EVOL: A CASE STUDYW32/EVOL: A CASE STUDYW32/EVOL: A CASE STUDYW32/EVOL: A CASE STUDYW32/EVOL: A CASE STUDY
W32/Evol is a relatively simple metamorphic virus.
Nonetheless, it is a good example for a case study since
the virus demonstrates properties that are common to all
metamorphic viruses, i.e. it obfuscates calls made to
system libraries and it mutates its code prior to propagation.

The rest of this section describes the details of these
methods.

OBFUSCAOBFUSCAOBFUSCAOBFUSCAOBFUSCATING SYSTEM CALLSTING SYSTEM CALLSTING SYSTEM CALLSTING SYSTEM CALLSTING SYSTEM CALLS
In order to perform a malicious act, a program must access
the disk or the network. Access to these resources is
controlled by the operating system. A quick way to
determine whether a program is malicious is to look at the
system calls it makes.

W32/Evol does not use a ‘normal’ procedure to make
system calls – it obfuscates its calls, which means that a
disassembler such as IDAPro cannot determine directly the
system calls it makes. W32/Evol uses the following
strategies to obfuscate its calls:

1. It computes the address of the kernel32.dll function
GetProcAddress() by searching for the eight-byte
sequence [0x55 00 01 F2 51 51 ec 8b] on Windows
2000. (The W32/Evol binary at http://vx.netlux.org/
looks for the byte sequence [0x55 00 00 0f 51 51 ec 8b],
which is probably for a different version of Windows.)

FEATURE 1

VIRUS BULLETIN www.virusbtn.com

1010101010 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

Location Instruction
00402118 cmp al, 0Fh

; Checking for two-byte opcode.
0040211A jnz short loc_402152

;compare al with next opcode.
0040211C mov cl, [esi+1]
0040211F cmp cl, 80h
00402122 jb loc_402532

; If byte following 0x0F is less than 0x80
; then exit mutation process

00402128 cmp cl, 90h
0040212B jnb loc_402532

; If byte following 0x0F is greater than
; 0x90 then exit mutation process

Location Instruction
0040227A cmp al, 0FEh
0040227C jz short loc_402282

; If the byte under analysis is FE
; goto 00402282

0040227E cmp al, 0FFh
; If the byte is FF goto 00402282

00402280 jnz short loc_4022B5
; compare al with next opcode.

00402282 mov al, [esi+1]
; If byte is either 0xFE or 0xFFload ModR/M
; byte in al

00402285 and al, 38h
00402287 ror al, 3
0040228A cmp al, 7
0040228C jz loc_402532

; If value of bits 3, 4, 5 of ModR/M byte are
; 1 the instruction does not exist
; Exit mutation process

The transformation rules can be classified into two
categories: deterministic and nondeterministic. A
deterministic rule always transforms an instruction to the
exact same sequence of instructions.

For example, the following rule for transforming the
instruction movsb (opcode 0xA4) is a deterministic
transformation rule:

movsb push eax

mov al, [esi]

add esi, 1

mov [edi], al

add edi, 1

pop eax

Figure 5 shows the procedure for generating a fixed
transformation for byte 0xA4 representing movsb.

A non-deterministic rule may transform an instruction to a
different sequence of instructions. The following two rules
demonstrate non-deterministic rules:

mov eax, [ebp+4] push ecx

(8B 45 04) mov ecx, ebp

add ecx, 41h

mov eax, [ecx-3Dh]

pop ecx

2. It keeps the address of GetProcAddress() in its
stack-based global data store, maintained at a certain
distance from a magic marker pushed on the stack.

3. It uses a ‘return’ instruction to make a call to
GetProcAddress().

4. It maintains the names of functions to be called as
immediate, double-word operands of multiple
instructions, not as strings in the data store.

MUTMUTMUTMUTMUTAAAAATION ENGINETION ENGINETION ENGINETION ENGINETION ENGINE

The mutation engine of W32/Evol is a function consisting
of the Disassembly and Transform modules described in
part 1 of this article (in VB, December 2004). It does not
have a Reverse Engineering module since it transforms one
instruction at a time.

The mutation engine is located at address 00401FD7. The
engine takes three inputs (all values quoted here are the
values recorded during a test run of W32/Evol in a debugger):

1. The Relocatable Virtual Address (RVA) of loaded virus
code: RVA = 401000.

2. The length of the original virus code: LEN = arg_4 (1847).

3. Pointer to buffer (BUF1) to store the transformed code:
(Max Size buffer = 4 x LEN = arg_8 (7F0000).

The output of the engine is the transformed program, which
is placed in the buffer BUF1.

DISASSEMBLDISASSEMBLDISASSEMBLDISASSEMBLDISASSEMBLY MODULEY MODULEY MODULEY MODULEY MODULE

The disassembly module of W32/Evol uses the linear sweep
algorithm. It checks whether a byte starts an instruction, if it
does then it gets the size of the instruction, and
disassembles the byte following the instruction. If, during
disassembly, the program comes across a byte that is not an
instruction, the mutation process is abandoned (see Figure 3).

The mutation engine processes only a limited range of
opcodes of the x86 instruction set. For instance, it does not
process floating-point instructions. The mutation is
abandoned if an instruction outside its accepted range is
encountered. Figure 4 shows the code fragment from
W32/Evol performing the instruction range check.

TRANSFORM MODULETRANSFORM MODULETRANSFORM MODULETRANSFORM MODULETRANSFORM MODULE

The Transform module maps an instruction into one or
more instructions. A detailed list of all the transformations
is given in the appendix to this article, which can be found
at http://www.virusbtn.com/magazine/articles/features/
2005/01_01.xml.

Figure 3. Invalid instruction check.

Figure 4. Invalid instruction ‘range’ check.

VIRUS BULLETIN www.virusbtn.com

1111111111JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

mov eax, [ebp+4] push esi

(8B 45 04) mov esi, [ebp+4]

mov eax, esi

pop esi

Whenever the code introduced by a rule modifies a register,
say reg, which was not modified by the original instruction,
the mutated code is wrapped between ‘push reg’ and ‘pop
reg’ instructions.

PAPAPAPAPATCHING RELOCATCHING RELOCATCHING RELOCATCHING RELOCATCHING RELOCATTTTTABLE ADDRESSESABLE ADDRESSESABLE ADDRESSESABLE ADDRESSESABLE ADDRESSES

W32/Evol does not contain any jump and call instructions
that use absolute addresses, rather all the branching
instructions use relative jumps. The virus also contains no
indirect jumps and calls, where the target address is
available in a register or some other memory location.

Since the transformations replace one instruction with
multiple instructions, the mutation engine must also modify
the relative addresses of the jump and call instructions.

In order to update the relative addresses, the mutation
engine maintains another buffer, BUF2, of size 16 x [length
of virus code]. For each instruction of the virus program,
BUF2 has four entries, as shown in Table 1.

The first entry of the table is Source, this points to the
address of the nth instruction in the virus code. The second
entry, Dest, points to the address in BUF1 where the
transformed virus code is stored. (Note that the mutation
engine takes BUF1 as input.)

The other two entries in the table are zero unless the
instruction carries a relocatable offset, in which case
the third entry points to the address where the calculated
offset is to be stored. The last entry stores the value of the
current offset.

The change in the length of the code results in a change of
relative addresses. To update the relative offsets, the
algorithm searches for all the non-zero ‘Entry 3’ locations,
i.e. instructions that have offsets.

If an instruction, I, with a non-zero offset is found, it adds
the original offset (Entry 4) to Source (Entry 1), to obtain
address a. Address a is the original destination address in
the W32/Evol code. Since this destination address should
start a valid instruction, there should be a valid record in
BUF2 such that Source is equal to a. (Note that BUF2
has records corresponding to each valid instruction in
virus code.)

The difference between the values of Dest at the location
of instruction I and Dest at location a gives us the new
offset. This offset gives the number of bytes that have been
added in the transformed code. The offset is then patched
back to the location pointed by Entry 3 at the location of
instruction I.

DEFEADEFEADEFEADEFEADEFEATING W32/EVOLTING W32/EVOLTING W32/EVOLTING W32/EVOLTING W32/EVOL

W32/Evol is no longer considered to be a major threat –
most current AV scanners can catch it owing to its relatively
simple morphing engine. Yet it may be worth contemplating
how this virus could be defeated. The insights could lead
to the development of methods for defeating other
metamorphic viruses.

W32/Evol uses some very interesting techniques to
obfuscate system calls. It is probably beyond the scope of
current static analysis techniques to undo these obfuscations
and identify the system functions being called by the virus.
It appears to be futile to follow that direction.

However, the limitations of the metamorphic engine of
W32/Evol are clearly its weaknesses.

• It uses linear sweep for disassembling itself, the same
method that is used by most disassemblers. Hence it
can easily be disassembled.

• It cannot use indirect jumps and calls because it
cannot transform them correctly. Thus, its control
flow graph can be derived easily, thereby simplifying
its reverse engineering.

• Its deterministic transformation rules essentially
replace a certain byte with a certain fixed sequence
of bytes. These rules can be applied in reverse.

Figure 5. Transformation of byte 0xA4.

Table 1. A record in the buffer BUF2.

Entry 1
(DWord)

Entry 2
(DWord)

Entry 3
(DWord)

Entry 4
(DWord)

Source Dest Next address
following
opcode

Original
offset

Location Instructions
004023B0 cmp al, 0xA4

; If byte is not 0xA4 goto next step
004023B2 jnz 004023CE
004023B4 add esi,1

; Increment esi to analyze next byte
004023B7 mov eax, 83068A50
004023BC stos dword ptr es:[edi]
004023BD mov eax, 78801C6
004023C2 stos dword ptr es:[edi]
004023C3 mov eax, 5801C783
004023C8 stos dword ptr es:[edi]

; If al contains 0xA4, insert the equivalent byte
; sequence 50 8A 06 83 C6 88 07 83 C7 01 58
; at the buffer location pointed to by edi

004023C9 jmp 00401FF8
; goto analyze next byte

VIRUS BULLETIN www.virusbtn.com

1212121212 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

THE THREE FACES OF VBA:THE THREE FACES OF VBA:THE THREE FACES OF VBA:THE THREE FACES OF VBA:THE THREE FACES OF VBA:
PARPARPARPARPART 1T 1T 1T 1T 1
Dr Vesselin Bontchev
FRISK Software International

We live in the age of specialization. Sixteen years ago, when
I started researching computer viruses, I quickly learned by
heart what every known virus in existence did – either
because I had analysed it myself, or because I had read
everything published about it by somebody else.

When the number of known viruses reached a volume at
which this became impossible, I began to specialize. I chose
to specialize in macro viruses because it was an emerging
threat, there were relatively few known macro viruses and
virus-writing techniques and, in general, the field looked
large, unexplored and promising.

I am a rather thorough and pedantic person; a perfectionist.
While this makes it difficult to socialize with most people
(who tend to find me dry, boring and, generally,
insufferable), it means that when I decide to study a subject,
I study it really thoroughly. As a result, I daresay that there
are now few people in the world whose knowledge of macro
viruses rivals mine. Of course, given that macro viruses are
no longer the threat they once were, some might consider
the usefulness of this knowledge arguable.

When one becomes highly knowledgeable in an extremely
narrow field, one is prone to a kind of tunnel vision that
tends to blind one to the notion that not everybody in the
world perceives as obvious, elementary and self-evident the
things one knows. Even if intellectually aware of this
problem, one is still occasionally surprised when others
show a lack of understanding of some obscure piece of
knowledge from one’s narrow field of expertise.

I had such a surprise recently, when reviewing the
manuscript of a fellow anti-virus researcher. The colleague
in question is a world-class expert – but he specializes
in a different kind of virus. After correcting the particular
problem in his work, I started researching it. To my great
surprise, I found only one article relevant to the issue [1] –
and that mentions the problem only fleetingly. The lack of a
good description of the problem is disturbing and, as I have
observed, it can be confusing for even the best among our
profession. Therefore, I decided to write this article.

THE PROBLEMTHE PROBLEMTHE PROBLEMTHE PROBLEMTHE PROBLEM
Let us cut to the chase. The problem is caused by the fact
that macros written in Visual Basic for Applications (VBA)
have three completely different forms, any of which can be
the one that is actually executed, depending on the

FEATURE 2
• The code generated by non-deterministic

transformation rules follows the pattern: push reg,
instructions, pop reg, where the instructions does
not contain push or pop. The push and pop
instructions form a pair of parentheses. All such
pairs are properly matched in the generated code.
It should be possible to undo the transformation
using a parenthesis-matching algorithm.

Now consider a program Undo.Evol that does the following:
it disassembles a program using linear sweep and then
applies the transformations of W32/Evol in reverse. The
program continues to apply the transformations until none
of the transformations can be applied. Will the Undo.Evol
program help in detecting versions of W32/Evol?

Since the transformations of Win32.Evol always increase
the code size, when applied in reverse they will always
decrease the code size. Suppose Undo.Evol applies a reverse
transformation repeatedly until no more transformations can
be applied. Since each reverse transformation reduces the
size of the program, Undo.Evol will always reach a state
where no more transformation can be applied. If it did not,
the process would reduce the size of the program to zero
bytes, and at that point no more transformations can be
applied anyway. Thus, Undo.Evol will always terminate.

It is a matter of further study whether Undo.Evol will always
terminate on a single program. If it can be shown that
Undo.Evol terminates on a single program, say Min.Evol,
then to detect W32/Evol one may apply Undo.Evol on a
binary and check for the signature of the Min.Evol.

CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS
Anti-virus scanner technology is constrained by the
theoretical limits of program analysis techniques. A
metamorphic virus is a manifestation of these limits. In
fact, metamorphic viruses also depend on program analysis
techniques, because in order to mutate, a metamorphic
virus must analyse its own code. Thus a metamorphic virus
cannot use tricks that will fool its own analyser.

This handicap of metamorphic viruses can potentially be
exploited to develop AV scanners. However, to reverse
the mutations in order to defeat a virus, the AV research
community faces several key questions. For example, how
does one extract the assumptions of a virus and the
transformations it performs? Will reverting the
transformations lead to a single result? Will the reverse
transformations terminate in polynomial time? And how
does one separate virus code from the code of the host?

The answers to some of these questions would be crucial in
developing technology that takes advantage of the Achilles’
heel of a virus.

VIRUS BULLETIN www.virusbtn.com

1313131313JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

circumstances. In order to illustrate the point, there follows
some background information.

OLE2, HOP!OLE2, HOP!OLE2, HOP!OLE2, HOP!OLE2, HOP!
The contemporary versions of the Microsoft Office
applications (Word, Excel, etc. – but not Access) save their
documents in files with the so-called ‘OLE2 structure’. An
OLE2 file is essentially a ‘file system within a file’ – it has a
File Allocation Table (FAT), clusters of various sizes, a root
directory (called ‘root storage’), subdirectories (called
‘storages’) and files (called ‘streams’).

The information stored by the application in the document
is contained in the various streams, while the storages are
used to organize these streams – just as you would keep
your information in files and organize these files in various
directories (folders). Just like the contents of a logically
continuous file can be split into clusters and these clusters
themselves scattered all over the physical hard disk, the
contents of a stream are also split into clusters and these
clusters can be scattered all over the physical file.

So, in order to read the contents of an OLE2 stream in a
logically continuous manner, you need to make sense of the
underlying file structure and to locate the stream’s clusters
in the right order. This is a rather daunting task, given the
complexity of the file structure and the lack of good
documentation describing it. And a scanner must be able to
do it, if it wants to scan for macro viruses properly.

Microsoft provides a set of APIs to perform the necessary
operations in a transparent manner. Unfortunately, they are

available only under Windows. Furthermore, they are rather
buggy – a trivial corruption of the OLE2 file can easily
cause an application that relies on Microsoft’s APIs (like the
programs from the Microsoft Office suite) crash or hang
when trying to process the offending file.

For the purposes of this article, we shall skip over the
complexities of the OLE2 formats and consider the logical
structure of these files. Fortunately, there is a wonderful
little publicly available tool that can show this structure in
an Explorer-like tree format. Its name is eDoc and it is made
by a company called eTree [2].

Figure 1 shows the typical logical OLE2 structure of a
document with a VBA macro in a module named
‘Module1’, as created by Microsoft Word. The subdirectory
tree ‘VBA’ is present in every VBA-containing OLE2 file,
while the other streams and storages are different,
depending on the particular Office application that has
created the document. For instance, Excel uses a storage
named ‘_VBA_PROJECT_CUR’ instead of ‘Macros’ and a
stream named ‘Workbook’ instead of ‘WordDocument’. For
the rest of this article, we shall concentrate only on the
streams in the VBA storage.

WELCOME TO VBAWELCOME TO VBAWELCOME TO VBAWELCOME TO VBAWELCOME TO VBA

It is worth noting that the problem we will discuss here
exists only in VBA versions 5 and higher. VBA version 5
was introduced with Office 97. In the earlier versions of
Office, only Excel supported VBA (version 3) and the
problem did not exist.

Figure 1. General OLE structure of a Word document with VBA macros.

VIRUS BULLETIN www.virusbtn.com

1414141414 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

Let us take another look at Figure 1. The streams in the
VBA storage can be split into four different categories,
depending on their contents.

The first category is the so-called module streams. There are
two of them in our example: ‘Module1’ and ‘ThisDocument’.
A module stream is created for every module that exists in
the VBA project – no matter whether it is a regular module
(like ‘Module1’), a class module (like ‘ThisDocument’),
or a user form (none are present in our example) – even if
the module in question is empty (as ‘ThisDocument’ is, in
our case).

The second category is the so-called execode streams. Their
names always begin with ‘__SRP_’, followed by a number.
We shall discuss the purposes and the contents of these
streams later.

The third category consists of the streams that contain
directory information. There are two of them in our
example: ‘dir’ and ‘_VBA_PROJECT’. These streams
contain information about the names and properties of the
modules of the VBA project. Some other information is
stored there too – for instance, the ‘_VBA_PROJECT’
stream contains all the identifiers (subroutine and variable
names) used in all modules, as well as the paths of all
add-ins used by the VBA project. An understanding of these
streams is not important for the purposes of this article, so
we shall ignore them.

The fourth category of streams are informative streams like
‘PROJECT’ and ‘PROJECTwm’. They contain information
such as whether the VBA project is password-protected
(and, depending on the VBA version, the trivially encrypted

password or a hash of it) and other such properties. They are
similarly irrelevant for our purposes.

THE MODULE STREAMSTHE MODULE STREAMSTHE MODULE STREAMSTHE MODULE STREAMSTHE MODULE STREAMS

Part of the content of a module stream is shown in Figure 2.
The module stream contains two of the VBA forms (‘faces’)
about which this article is talking – the p-code and the
compressed source.

The p-code arThe p-code arThe p-code arThe p-code arThe p-code areaeaeaeaea

The p-code area is highlighted in Figure 2. It is outside the
scope of this article to explain exactly how the p-code area
can be located in a module stream. Much of the necessary
information has been received from Microsoft under a Non
Disclosure Agreement (NDA) – suffice it to say that all
legitimate anti-virus developers who have signed such an
NDA with Microsoft can receive this information.

It is similarly outside the scope of this article to give a
detailed explanation of how to read (and make sense of) the
contents of the p-code area. For more information on this
subject, the reader is referred to [3]. For the curious among
you, in our example the VBA macro in Module1 contains:

Sub Test()
 MsgBox “This is a test.”, vbOKOnly + vbInformation, “Test”
End Sub

The p-code highlighted in Figure 2 can be read as follows:

8F 04 00 00 00 00 ; Sub Test(). “0x00000000” is a
; pointer to a structure,

Figure 2. The p-code area in the module stream (‘Module1’) is highlighted.

VIRUS BULLETIN www.virusbtn.com

1515151515JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

; describing the subroutine’s
; name and parameters.

00 00 ; Filler. Each p-code line is
; padded with garbage, so that
; the number of bytes it consists
; of is always a multiple of 8.

6C 00 ; End Sub. The p-code lines
; don’t have to be physically in
; order. Their logical order is
; described elsewhere in the
; module stream.

FF FF 70 00 00 00 ; Filler
AE 000F 0054686973206973206120746573742E00 ; “This is a test.”

; Strings are padded with a zero,
; if necessary, so that their
; length is always a
; multiple of 2.

20 00 20 02 ; Load the identifier “vbOKOnly”.
; “0x0220” is a reference to
; the actual identifier, which
; is stored elsewhere (in the
; _VBA_PROJECT stream).

20 00 22 02 ; Load the identifier
; “vbInformation”.

0B 00 ; +. The p-code interpreter is
; a stack machine and works in
; Reverse Polish Notation - i.e.,
; the operands are followed by
; the operator.

AE 00 04 00 5465737441 ; “Test”
40 1E 02 03 ; Subroutine call to MsgBox.

; Again “0x0302” is a reference
; to the table of identifiers in
; the _VBA_PROJECT stream.

00 00 00 00 00 ; Filler

The sourThe sourThe sourThe sourThe source code arce code arce code arce code arce code areaeaeaeaea

Almost immediately after the p-code area, each module
stream contains a source code area. The latter,

unsurprisingly, contains the source code of the VBA
program that resides in the module. The source code area is
compressed using Lempel-Zev compression, which is why
it is not readable immediately – but it is, nevertheless, easily
recognizable by visual inspection.

THE EXECODE STREAMSTHE EXECODE STREAMSTHE EXECODE STREAMSTHE EXECODE STREAMSTHE EXECODE STREAMS
As mentioned earlier, the execodes reside in the __SRP_
streams. They are the third ‘face’ (i.e. executable form) of a
VBA program – besides the p-code and the source code.
(We shall explain why the source code is ‘executable’ in the
next section.)

Unfortunately, very little is known about the exact purpose
and format of the execodes. Microsoft has not been
forthcoming on this subject either, simply because it does
not have such information, surprising as it seems. As a rule,
Microsoft does not document internally the formats it
develops. Instead, it documents the API calls necessary
to access them. While this might make sense in a Windows
environment, it is rather useless to those who wish to
develop and support multi-platform anti-virus programs.

So, the little information we have about the execode
streams has come from reverse-engineering. Unfortunately,
since this form is almost never used, and we’ve always had
enough higher-priority Microsoft things to reverse-engineer,
we do not really know much on the subject of execode
formats.

What we do know is that the module named ‘__SRP_0’ is a
special one. It seems to contain, among other things, all

Figure 3. The source code area in the module stream (‘Module1’ in our example) is highlighted.

VIRUS BULLETIN www.virusbtn.com

1616161616 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

literal strings used in all VBA modules of the VBA project.
Part of the content of this stream is shown in Figure 4.

We also know that every module stream has its separate
corresponding __SRP_ execode stream – although presently
we do not know how to determine which execode stream
corresponds to which module stream, and we do not know
the purpose of the additional execode streams.

The content of the execode stream corresponding to the
‘Module1’ module stream in our example is shown in
Figure 5. If you cannot make sense of it, don’t worry – you
are not alone.

We do not reliably know even how to locate the beginning
of the execodes in the execode stream – although we have
developed a set of heuristics that seems to work most of the
time. What we do know is that each subroutine or function
of a module has its own area in the execode stream. These
areas are adjacent and in the order in which the subroutines
(or functions) appear in the module. Somewhere before
them in the execode stream there is a two-byte word,
containing the number of such areas – it is at offset 0x003C
in the ‘__SRP_2’ stream in our example and it contains
0x0001, for the ‘Module1’ stream contains only a single
subroutine (‘Test’). The corresponding single execodes area
begins at offset 0x005A in the ‘__SRP_2’ stream in our case.

Each such area seems to begin with two four-byte fields [4].
The first field seems to contain the full size of the area
(0x00000080 in our case), while the second seems to
contain the size of the non-variable part of it (0x00000040
in our case). This non-variable part is always located at the

beginning of the area that corresponds to a particular
subroutine or function. The rest of the area is the variable
part – so called because its contents seem to be variable,
although we don’t have the slightest clue how to interpret it.
In fact, we are not even certain that the contents of the
so-called ‘non-variable area’ are always constant.

That, I am afraid, exhausts all that we currently know about
the format of the execodes streams.

PIECING IT ALL TOGETHERPIECING IT ALL TOGETHERPIECING IT ALL TOGETHERPIECING IT ALL TOGETHERPIECING IT ALL TOGETHER

Most of the time, it is the p-code area that is executed when
a VBA program is run. The execodes are not even always
present – the streams containing them can safely be deleted
and the VBA program will still run without problems. The
source code area can be modified with a hex editor, so that
its contents do not match what the p-code says (for instance,
in our example we could patch the ‘T’ to ‘P’ at offset
0x054E in the stream named ‘Module1’) – and, if the
patched macro is run, it will be the contents of the p-code
that are executed. Worse, if you open the patched document
with Word and inspect its VBA module with the VBA
Editor, you will not see any effects from the patching – the
VBA Editor cheerfully ignores the compressed source and
decompiles the p-code into what it displays.

Seemingly, neither the source code, nor the execodes are of
any importance and one should concentrate on the p-code
alone when scanning for VBA macro viruses. But, when
Microsoft provided us with the limited information it did on
the subject of VBA, we were told two things explicitly.

Figure 4. Part of the content of the ‘__SRP_0’ stream in our example.

VIRUS BULLETIN www.virusbtn.com

1717171717JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

First, we were told to decompress the compressed source
code area and to scan that. Second, we were told that, when
disinfecting a VBA macro virus, we should delete all
__SRP_* streams that are present.

True to form, there was no explanation of the reasoning
behind these two recommendations. We cheerfully ignored
Microsoft’s suggestions – although not all anti-virus
companies handled them in the same way. Very few
products implemented both of the recommendations, some
implemented only the first, some only the second, and some
(again, very few) ignored both of them.

I was responsible for implementing the macro scanning
engine in our product and I took the decision to ignore the
first suggestion but to implement the second. My reasoning
was that, since the p-code was clearly what was executed, it
made most sense to scan it instead of anything else. I
decided to remove the __SRP_* streams when disinfecting
because I could, and I didn’t see any harm in doing so.

Much later, we discovered that there had been excellent
reasons behind Microsoft’s suggestions. As it turns out, the
algorithm used by VBA to interpret the p-code, the source
code and the execodes is as follows:

IF (the execodes exist) AND
(the execodes are created by exactly the same
version of VBA as the one opening the
VBA project)

THEN
use the execodes

ELSE IF (the p-code is created by the same version of
VBA as the one opening the VBA project)

THEN
use the p-code

ELSE
use the source code

END IF

By ‘exactly the same version’, I mean just that. For
instance, even the same version numbers of Windows Office
and Mac Office do not have exactly the same version of
VBA, because one of them uses little-endian byte format
and the other uses a big-endian one.

By ‘the same version of VBA’, I mean just the same version
number. For instance, both Office 97 for Windows and Office
98 for Macintosh use the same version of VBA (5.0).

The execodes seem to be some kind of memory dump of the
structures that the p-code interpreter creates in memory
when loading the p-code instructions. Since we don’t know
exactly what the execodes are, you will have to use your
imagination as to what exactly ‘use the execodes’ means.

By ‘use the source code’, I mean decompress the
compressed source code area in memory, compile it into
p-code, and start interpreting that p-code.

Why such a convoluted algorithm? Presumably, the purpose
of the execodes is to speed up the loading and execution of
the p-code. They do not have to be present and, even if they
are present, they will not be used if the document containing
them is opened with a different version of Office.

But if the execodes are present and the document is opened
by exactly the same version of Office as the one used to
create it, the execodes will be used and (presumably) will
load and run faster than interpreting the p-code directly. The
execodes will be present only if the document containing

Figure 5. A regular execodes stream.

VIRUS BULLETIN www.virusbtn.com

1818181818 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

the VBA project is saved after the VBA code in it has been
executed at least once. Depending on how, exactly, a macro
virus works (i.e., whether or not any of the viral code in the
newly infected document is run before that document is
saved), some will always contain execodes in their VBA
project and some never will.

The reason for the presence (and usage) of the source code
is a completely different one. It provides compatibility
between the different VBA versions. For instance, VBA
version 6.0 (used in Office 2000 and above) is slightly
different (it has some additional p-code instructions) from
VBA version 5.0 (used in Office 97). If it weren’t for the
source code, Office 2000 would not be able to execute
directly any macros in the Office 97 documents it opens –
because the opcodes of the p-code instructions would be
different and incompatible. Instead, it would need a special
upconversion program. Furthermore, as new versions of
VBA are introduced, the number of such converters would
have to increase exponentially in order to cover all possible
up- and downconversions between the various existing
VBA versions.

Yet, with the algorithm described above, the problem of
multiple converters is solved in a very elegant way: none are
needed. If a document containing a VBA macro is opened
with a version of Office that contains a version of VBA
different from the one that has been used to create the
macro in the document (whether it is a higher or a lower
version number), the source code area in the module
stream(s) will simply be decompressed, recompiled and
executed. There is no need for p-code upconversion or
downconversion; the existing p-code is simply ignored and
recreated from the source.

It is a very elegant solution to a rather difficult problem.
Unfortunately, whoever came up with that solution at
Microsoft clearly wasn’t thinking along the same lines as
the designers of the anti-virus programs. As a result, the
solution created a completely different set of problems.

[Vesselin explains all about those problems in the
continuation of this article in the February 2005 issue of
Virus Bulletin - Ed.]

REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES

[1] Igor Muttik, ‘A Portrait of Jini’, Virus Bulletin,
October 2000, p.7.

[2] http://www.etree.com/tech/freestuff/edoc/eDoc.exe.

[3] Vesselin Bontchev, ‘Solving the VBA upconversion
problem’, Proc. 10th Int. Virus Bull. Conf., pp.273–299.

[4] Costin Raiu, personal communication.

VB2005 DUBLINVB2005 DUBLINVB2005 DUBLINVB2005 DUBLINVB2005 DUBLIN

Virus Bulletin is
seeking submissions
from those wishing to
present at VB2005,
the Fifteenth Virus
Bulletin International
Conference, which
will take place 5–7 October 2005 at The Burlington,
Dublin, Ireland.

The conference will include two full days of 40-minute
presentations running in concurrent streams: Technical
Anti-Virus, Corporate Anti-Virus and Spam (both technical
and corporate).

TOPICSTOPICSTOPICSTOPICSTOPICS

Submissions are invited on all subjects relevant to the
anti-virus and anti-spam arenas.

A list of suggested topics elicited from attendees at VB2004
can be found at http://www.virusbtn.com/conference/
vb2005. However, please note that this list is not exhaustive,
and papers on these and any other AV and spam-related
subjects will be considered.

VB welcomes the submission of papers that will provide
delegates with ideas, advice and/or practical techniques, and
encourages presentations that include practical
demonstrations of techniques or new technologies.

HOW TO SUBMIT A PAPERHOW TO SUBMIT A PAPERHOW TO SUBMIT A PAPERHOW TO SUBMIT A PAPERHOW TO SUBMIT A PAPER

Abstracts of approximately 200 words must reach the Editor
of Virus Bulletin no later than Thursday 10 March 2005.
Submissions received after this date will not be considered.
Abstracts should be sent as RTF or plain text files to
editor@virusbtn.com. Please include full contact details
with each submission.

Following the close of the call for papers all submissions
will be anonymised before being reviewed by a selection
committee; authors will be notified of the status of their
paper by email.

Authors are advised in advance that, should their paper be
selected for the conference programme, the deadline for
submission of the completed papers will be Monday 6 June
2005 and that full papers should not exceed 8,000 words.

Further details of the paper submission and selection
process are available at http://www.virusbtn.com/
conference/vb2005/.

CALL FOR PAPERS

VIRUS BULLETIN www.virusbtn.com

1919191919JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

AAAAAVVVVVAR 2004: EUTAR 2004: EUTAR 2004: EUTAR 2004: EUTAR 2004: EUTAXY OR CHAOS?AXY OR CHAOS?AXY OR CHAOS?AXY OR CHAOS?AXY OR CHAOS?
Righard Zwienenberg
Norman, The Netherlands

The AVAR 2004 conference,
entitled ‘Eutaxy [meaning good or
established order - Ed] or chaos?’,
was held on 25 and 26 November
2004 at the Sheraton Grande hotel
in Tokyo, Japan.

AVAR 2004 chair Mr Shigeru Ishii
opened the conference by
welcoming some 200 delegates to
Tokyo and reviewing the journey of

viruses over the last 20 years from desktop, to LAN, to
WAN. Mr Ishii was followed by Mr Seiji Murakami,
chairman of AVAR, who confessed that he was glad to see
the conference return to Japan, since it meant that he could
present in Japanese, instead of struggling with English.

The first morning of the conference was taken up with
presentations and panel discussions on the state of computer
security in Japan, Korea and China. Of particular interest
was a presentation by Zhang Jian, of CNCERT (the Chinese
National Computer Network Emergency Response
Technical Team), about the legal aspects of writing
malicious code.

The afternoon’s session started with Suguru Yamaguchi,
advisor on information security for the IT Security Office of
Japan’s Cabinet Secretariat, who presented both a
government and industry model for the Critical
Infrastructure Protection (CIP) in Japan. Japan has just
stepped into the challenge of combining CIP and
Information and Communication Technology (ICT) and
Suguru’s presentation provided an excellent overview.

David Perry’s presentation was, as usual, entertaining.
David led the audience through some past and present
threats and their appropriate responses. Those who have
seen David present before will not be surprised to learn that
he spoke too quickly for the translators providing
simultaneous translation to keep up. Unfortunately, it
proved to be a no-win situation for the translators (and for
the non-English speakers for whose benefit they were
translating) because, having recognised that he was
speaking too fast, and slowed down, David proceeded to use
a large number of untranslatable words!

A banquet held on the first evening of the conference saw
some rather interesting and unexpected entertainment in the
form of Seiji Murakami, who cast off his business attire,
picked up the drumsticks and performed with a guitar band
on stage. Those lucky enough to witness Seiji’s closing

drum solo will never look
at him again in quite the
same light – from now on
he will be known as Seiji
‘Mr Hit It!’ Murakami.

Jeannette Jarvis started the
second day off by
providing an insight into
how The Boeing Company
manages a global
corporate protection
infrastructure.

To follow, Randy Abrams and Andreas Marx joined forces
to demonstrate how they script AV file signature updates and
how they perform testing for their specific purposes.

Next, Eugene Kaspersky charted the evolution of the
computer underground, in an in-depth retrospective of
virus-writing – from hooliganism to organised crime.

Mikko Hypponen followed up by showing that the
virus-writing scene has moved on from the days when
youngsters were writing viruses for fun or ego-boosting
purposes. Mikko described what we know of today’s virus
‘professionals’, who use viruses, spam and spyware for the
express purpose of gaining money and data. The data
collected is subsequently sold on – a practice that has been
in common use among spammers for some time.

Later in the afternoon, Jimmy Kuo related some of his
experiences in his role as a Police Reserve Specialist for
the Hillsboro Oregon Police Department in his presentation,
‘Chasing the bad guys’. Jimmy described how the police,
with the aid of the security industry, attempt to hunt down
those who write and distribute malware. Sometimes they
are successful, as in the case of W97/Melissa author
David L. Smith, and sometimes they are not – as was the
case with the author(s) of the Sobig.F virus. Although the
police found the system from which the virus was
launched, the elderly couple who owned the system had no
idea that it had been infected and commandeered to send
out the new virus.

In the final panel session of the conference, representatives
of some of the conference sponsors were asked to give
delegates some idea of their companies’ future strategies.
The common factor here was that each of the panel
members mentioned phishing and mobile devices as a major
focus of their company’s future strategy.

Finally, the 7th AVAR conference was drawn to a close with
the traditional closing ceremony, and the venue for the next
AVAR conference was announced: AVAR 2005 will be held
in the city of Tianjin, in the People’s Republic of China
(date TBA).

Seiji ‘Mr Hit It!’ Murakami.

CONFERENCE REPORT

JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

VIRUS BULLETIN www.virusbtn.com

ADVISORADVISORADVISORADVISORADVISORY BOARDY BOARDY BOARDY BOARDY BOARD
Pavel Baudis,Pavel Baudis,Pavel Baudis,Pavel Baudis,Pavel Baudis, Alwil Software, Czech Republic
Ray Glath,Ray Glath,Ray Glath,Ray Glath,Ray Glath, Tavisco Ltd, USA
Sarah GorSarah GorSarah GorSarah GorSarah Gordon,don,don,don,don, Symantec Corporation, USA
Shimon GrShimon GrShimon GrShimon GrShimon Gruperuperuperuperuper,,,,, Aladdin Knowledge Systems Ltd, Israel
DmitrDmitrDmitrDmitrDmitry Gry Gry Gry Gry Gryaznovyaznovyaznovyaznovyaznov,,,,, Network Associates, USA
Joe HarJoe HarJoe HarJoe HarJoe Hartmann,tmann,tmann,tmann,tmann, Trend Micro, USA
Dr Jan Hruska,Dr Jan Hruska,Dr Jan Hruska,Dr Jan Hruska,Dr Jan Hruska, Sophos Plc, UK
Jakub Kaminski,Jakub Kaminski,Jakub Kaminski,Jakub Kaminski,Jakub Kaminski, Computer Associates, Australia
Eugene KasperskyEugene KasperskyEugene KasperskyEugene KasperskyEugene Kaspersky,,,,, Kaspersky Lab, Russia
Jimmy Kuo,Jimmy Kuo,Jimmy Kuo,Jimmy Kuo,Jimmy Kuo, Network Associates, USA
Anne PAnne PAnne PAnne PAnne P. Mitchell,. Mitchell,. Mitchell,. Mitchell,. Mitchell, Institute of Spam and Public Policy, USA
Costin Raiu,Costin Raiu,Costin Raiu,Costin Raiu,Costin Raiu, Kaspersky Lab, Russia
Péter SzörPéter SzörPéter SzörPéter SzörPéter Ször,,,,, Symantec Corporation, USA
Roger Thompson,Roger Thompson,Roger Thompson,Roger Thompson,Roger Thompson, PestPatrol, USA
Joseph WJoseph WJoseph WJoseph WJoseph Wells,ells,ells,ells,ells, Fortinet, USA

SUBSCRIPTION RASUBSCRIPTION RASUBSCRIPTION RASUBSCRIPTION RASUBSCRIPTION RATESTESTESTESTES
Subscription price for 1 year (12 issues) includingSubscription price for 1 year (12 issues) includingSubscription price for 1 year (12 issues) includingSubscription price for 1 year (12 issues) includingSubscription price for 1 year (12 issues) including
first-class/airmail delivery: first-class/airmail delivery: first-class/airmail delivery: first-class/airmail delivery: first-class/airmail delivery: £195 (US$310)

Editorial enquiries, subscription enquiries,Editorial enquiries, subscription enquiries,Editorial enquiries, subscription enquiries,Editorial enquiries, subscription enquiries,Editorial enquiries, subscription enquiries,
orororororders and payments:ders and payments:ders and payments:ders and payments:ders and payments:

Virus Bulletin Ltd, The Pentagon, Abingdon Science Park,
Abingdon, Oxfordshire OX14 3YP, England

Tel: +44 (0)1235 555139 Fax: +44 (0)1235 531889
Email: editorial@virusbtn.com www.virusbtn.com

No responsibility is assumed by the Publisher for any injury and/or
damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material
herein.

This publication has been registered with the Copyright Clearance
Centre Ltd. Consent is given for copying of articles for personal or
internal use, or for personal use of specific clients. The consent is
given on the condition that the copier pays through the Centre the
per-copy fee stated below.

VIRUS BULLETIN © 2005 Virus Bulletin Ltd,The Pentagon, Abingdon
Science Park, Abingdon, Oxfordshire OX14 3YP, England.
Tel: +44 (0)1235 555139. /2005/$0.00+2.50. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any
form without the prior written permission of the publishers.

END NOTES & NEWS

2020202020

Computer & Internet Crime 2005 will take place 24–25 January
2005 in London, UK. The conference is dedicated solely to the
problem of cyber crime and the associated threat to business,
government, public services and individuals. For more details and to
register, see http://www.cic-exhibition.com/.

SecureLondon 2005 takes place 10 February 2005 in London,
UK. Sessions include: Identity Management (Fred Piper, Royal
Holloway), Crime on the Internet (Steve Santorelli, Scotland Yard)
and the Future of Internet Security (Phil Cracknell, netSurity). For
more information, and to register, visit https://www.isc2.org/events/.

The 14th annual RSA Conference will be held 14–19 February
2005 at the Moscone Center in San Francisco, CA, USA. For more
information, including online registration and the conference agenda,
see http://www.rsaconference.com/.

Websec 2005: i-Security World Conference takes place 15–17
March 2005 in London, UK. Optional workshops will be held on 14
and 18 March. The conference features three tracks: security policy,
risk & governance; IT infrastructure security; and enterprise
application security. For details see http://www.mistieurope.com/.

The E-crime and Computer Evidence conference ECCE 2005
takes place at the Columbus Hotel in Monaco from 29–30 March
2005. ECCE 2005 will consider aspects of digital evidence in all
types of criminal activity, including timelines, methods of evidence
deposition, use of computers for court presentation, system
vulnerabilities, crime prevention etc. For more details see
http://www.ecce-conference.com/.

Black Hat Europe takes place in Amsterdam, The Netherlands,
from 29 March to 1 April 2005. Black Hat Europe Training runs
from 29 to 30 March, with the Black Hat Europe Briefings following,
from 31 March until 1 April.

Black Hat Asia takes place 5–8 April 2005 in Singapore. In this
case the Briefings take place 5–6 April, with the training on 7–8
April. A call for papers for the Black Hat Briefings (both Europe and
Asia) closes on 15 January 2005. For details and registration see
http://www.blackhat.com/.

The first Information Security Practice and Experience
Conference (ISPEC 2005) will be held 11–14 April 2005 in
Singapore. ISPEC is intended to bring together researchers and
practitioners to provide a confluence of new information security
technologies, their applications and their integration with IT
systems in various vertical sectors. For more information see
http://ispec2005.i2r.a-star.edu.sg/.

Infosecurity Europe 2005 takes place 26–28 April 2005 in
London, UK. Now in its tenth year, the exhibition will have over
250 exhibitors and its organisers anticipate over 10,000 visitors.
See http://www.infosec.co.uk/.

The 14th EICAR conference will take place from 30 April to
3 May 2005 in Saint Julians, Malta. Authors are invited
to submit papers for the conference. The deadlines for submissions
are as follows: academic papers 14 January 2005; poster presentations
18 February 2005. For full details see http://conference.eicar.org/.

The sixth National Information Security Conference (NISC 6)
will be held 18–20 May 2005 at the St Andrews Bay Golf Resort
and Spa, Scotland. For details of the agenda (which includes a
complimentary round of golf at the close of the conference) or to
register online, see http://www.nisc.org.uk/.

The third International Workshop on Security in Information
Systems, WOSIS-2005, takes place 24–25 May 2005 in Miami,
USA. For full details see http://www.iceis.org/.

NetSec 2005 will be held 13–15 June 2005 in Scottsdale AZ, USA.
The program covers a broad array of topics, including awareness,
privacy, policies, wireless security, VPNs, remote access, Internet
security and more. See http://www.gocsi.com/events/netsec.jhtml.

The 15th Virus Bulletin International Conference, VB2005, will
take place 5–7 October 2005 in Dublin, Ireland. For conference
registration, sponsorship and exhibition information and details of
how to submit a paper see http://www.virusbtn.com/.

CONTENTS

JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005 S1S1S1S1S1

FEATURE
AAAAA SPSPSPSPSPAMAMAMAMAM PROGRAM’SPROGRAM’SPROGRAM’SPROGRAM’SPROGRAM’S TECHNIQUESTECHNIQUESTECHNIQUESTECHNIQUESTECHNIQUES
John Graham-Cumming
The POPFile Project, USA

Send-Safe is a bulk email program and service. The
Send-Safe application is freely available on the Internet from
http://www.send-safe.com/. Send-Safe allows a user to create
bulk email campaigns, manage mailing lists and send messages
either directly through an SMTP server or through a list of
open, anonymous proxies; proxies can be provided either by
the user, or provided automatically by the Send-Safe service.

To send bulk email with Send-Safe the user must open an
account with send-safe.com and purchase credits. Credits
can be bought in blocks – prices start at $50 for 400,000
messages, and range up to $3,000 for 300 million messages.

Send-Safe has many capabilities, including the ability to select
random From, To and Subject lines; insert random chains of
Received headers; create a random From address; change
the DNS name of the machine sending the mail, etc. This
article looks at Send-Safe’s content obfuscation techniques.

UI AND MACRO LANGUAGEUI AND MACRO LANGUAGEUI AND MACRO LANGUAGEUI AND MACRO LANGUAGEUI AND MACRO LANGUAGE
When Send-Safe is run it presents a user interface (UI) in
which the user composes an email message to form part of a
bulk email campaign. Logging in with the demonstration
account generates a sample message as shown here.

NEWS & EVENTS
LLLLLYCOS ENDS DDYCOS ENDS DDYCOS ENDS DDYCOS ENDS DDYCOS ENDS DDoooooS STUNTS STUNTS STUNTS STUNTS STUNT
Lycos ended a controversial DDoS campaign against
spammers last month, claiming that it had accomplished its
objectives. The campaign, in which Lycos encouraged users
to download a screensaver program which sent HTTP requests
to spammers’ servers, had been criticised for its vigilante
nature. A Lycos spokesman explained: ‘The aim of the
campaign was to ignite a debate about anti-spam measures.
We feel that we have achieved this through our activity and
will continue that debate with others in the email industry.’

Unfortunately, the company’s campaign may have started
problems of a different kind – reports have been received of
a fake Lycos screensaver circulating on the Internet. The file,
which arrives as an attachment to an email with the subject
line ‘Be the first to fight spam with Lycos screen saver’, is
actually a RAR SFX archive with embedded keylogger
Trojan components. More details of the story can be found
at http://www.virusbtn.com/news/spam_news/.

EVENTSEVENTSEVENTSEVENTSEVENTS
The 2005 Spam Conference will be held in Cambridge, MA,
USA on 21 January 2005. See http://spamconference.org/.

The ISIPP’s National ‘Spam and the Law’ Conference will
be held on 28 January 2005 in San Francisco, CA, USA. See
http://www.isipp.com/.

The IQPC will hold a two-day conference on managing and
securing corporate email from 1–2 February 2005 in Las
Vegas, NV, USA. See http://www.iqpc.com/.

S1 NEWS & EVENTSNEWS & EVENTSNEWS & EVENTSNEWS & EVENTSNEWS & EVENTS

S1 FEAFEAFEAFEAFEATURETURETURETURETURE

A spam program’s techniques

S4 BOOK REVIEWBOOK REVIEWBOOK REVIEWBOOK REVIEWBOOK REVIEW

Spammers revealed

SPAM BULLETIN www.virusbtn.com

JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005S2S2S2S2S2

common among spammers’ websites), the following macro
could be used: http://{%URL:{%RND:<l10>%}.jgc.org/}.
This would generate a new sequence of up to 10 letters
followed by .jgc.org and then encode the entire URL.

RANDOMIZING HTML CONTENTRANDOMIZING HTML CONTENTRANDOMIZING HTML CONTENTRANDOMIZING HTML CONTENTRANDOMIZING HTML CONTENT
Another technique that Send-Safe uses to obfuscate the
content of a message is the insertion of random HTML tags
in a message. When this feature is enabled, and the message
being sent is in HTML format, Send-Safe will insert random
pairs of , , , , <I> and
other harmless HTML tags in the message. Each tag is
paired with a matching end tag.

It is possible for Send-Safe to make a mistake and insert a tag
inside a tag. While testing the software it generated a line of
text containing <FONT>, which resulted in the
display of a ‘>’ in the final email. This appears to be a bug.

HIDING BAD WORDSHIDING BAD WORDSHIDING BAD WORDSHIDING BAD WORDSHIDING BAD WORDS
No spammer wants a word like ‘Viagra’ to appear in simple
ASCII text in their email, since many spam filters look for
keywords such as this to filter out spam. Send-Safe has a
specific feature to hide ‘bad words’.

The user creates a file called ‘badwords.txt’, places it in
C:\Program Files\Send-Safe and enables the ‘Hide words
from badwords.txt’ function. If any of the words listed in
this file are present in the message, the word(s) in question
will be split at a random point and a piece of HTML
inserted. If, for example, the word ‘welcome’ was listed in
badwords.txt, each time it was found in the message a piece
of HTML in the form:

ghuwefeq

would be inserted to break up the word (the letters in the
middle are chosen at random). This will prevent some spam
filters from seeing the sensitive word. The HTML does
nothing when the email message is displayed and the word
‘welcome’ will appear in one piece.

MESSAGE PARMESSAGE PARMESSAGE PARMESSAGE PARMESSAGE PART CONTROLT CONTROLT CONTROLT CONTROLT CONTROL
Send-Safe also provides macros that control the application
of specific techniques to regions of a message. It is possible,
using these macros, to base 64 encode or quoted-printable
encode part of a message, or enable hiding of bad words and
randomizing HTML content.

Base 64 encoding is used typically to encode binary content
(e.g. a Word file attachment) in ASCII form so that it can be
handled by mail servers. Quoted-printable encoding is used
by Microsoft email programs like Outlook Express to

The sample message has a list of possible From, To and
Subject lines and the following body:

{%ROT:Hello|Hi!|Hi,%}

You don’t have to reply, this is a test.
I have a new site: somewhereonweb.com

You are welcome!

Another piece of text

The first line consists of {%ROT:Hello|Hi!|Hi,%}, which
means that each time a message is sent, Send-Safe will pick
‘Hello’, ‘Hi!’ or ‘Hi’, for the start of the message. This is an
example of the macro language that is built into Send-Safe
for automatic message customization.

A variant of {%ROT%} is {%ROTF%}, which selects from
a list of possible text in a file: each line of the file is a possible
piece of text to insert and Send-Safe will select a line randomly.
{%WROTF%} selects a single word from a file to insert
into a sentence. These ROT macros provide a means of
customizing messages so that each message is unique.

The {%RND%} macro is used to add random characters to
an email. For example, specifying {%RND: ##^^**%}
would insert two random numbers (#), two random upper
case letters (^) and two lower case letters (*).

More powerfully, {%RND%} has a syntax for creating
random sequences of characters with random lengths:
{%RND:<d12><l10><L5><m5>%} means ‘add up to 12
digits, followed by up to 10 lower case letters, followed by
up to five upper case letters, followed by up to five digits,
upper case or lower case letters.’

{%RND%} was clearly intended for adding text to break
anti-spam measures that rely on checksumming or
fingerprinting messages to detect bulk runs of the same
message.

To hide URLs from filters, the {%URL%} tag will
encode the URL. For example, suppose that I wanted to
email the URL http://www.jgc.org/. I would write
http://{%URL:www.jgc.org/%} and Send-Safe would insert
http://%77%77%77%2E%6A%67%63%2E%6F%72%67%/
in the message. This form works in any email program and
will take you to the website, but it will fool some
spam-filtering software.

Furthermore, Send-Safe allows these macros to be nested
inside one another, so it is possible, for example, to ask
Send-Safe to obscure a URL with {%URL%} and within it
generate a random part of the URL using {%RND%} or
pick a random URL from a list with {%ROT%}. It is
common for the URLs in spam messages to have a
completely bogus part in the DNS name, and for the DNS
server for the spammer’s website to accept any name in that
part. If it were the case that http://www.jgc.org/ would
accept any sequence of characters in place of www (as is

SPAM BULLETIN www.virusbtn.com

JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005 S3S3S3S3S3

encode the content of an email message so that the message
is unlikely to be modified by an email server.

{%BEGIN_BASE64%}/{%END_BASE64%} enables
base 64 encoding of the enclosed region, and the macro
{%BEGIN_QUOTEDPRINTABLE%}/
{%END_QUOTEDPRINTABLE%} does the same for
quoted-printable encoding.

{%BEGIN_RANDHTML%}/{%END_RANDHTML%}
enables the insertion of random HTML tags in the enclosed
region, just like the randomizing HTML feature.
{%BEGIN_HIDEBADWORDS%}/
{%END_HIDEBADWORDS%} enables the ‘Hide words
from badwords.txt’ function between the macros.

PUTTING IT ALL TOGETHERPUTTING IT ALL TOGETHERPUTTING IT ALL TOGETHERPUTTING IT ALL TOGETHERPUTTING IT ALL TOGETHER

Send-Safe includes a
preview function
that allows the user
to see what their
message will look
like when viewed
with Outlook
Express. Here’s an
example of
previewing the
default message
with the following
options: the ‘Hide
words from

badwords.txt’ function is enabled and set to obscure the
word ‘welcome’, the ‘Randomize body HTML’ function is
enabled, the message is in HTML form and a single
{%ROT%} macro is included.

You can see that Send-Safe has picked a random From
address (and further obscured it by inserting the random
letters ‘jrlwo’), and picked a random To and Subject. The
body of the HTML shows some italics and underlining,
which indicates that random HTML tags have been inserted.

The message source is as follows:

From: <freecashcowjrlwo@excite.com>
To: “Administrator” <freecashcowjrlwo@excite.com>
Subject: Do you remember me?
Date: Tue, 30 Nov 2004 10:33:07 +0600
MIME-Version: 1.0
Content-Type: multipart/alternative;
boundary=”——=_NextPart_A11_623_DEA9B.72FB7"
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 6.00.2800.1106
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1106

This is a multi-part message in MIME format.
---=_NextPart_A11_623_DEA9B.72FB7
Content-Type: text/plain;

charset=”us-ascii”
Content-Transfer-Encoding: quoted-printable

---=_NextPart_A11_623_DEA9B.72FB7
Content-Type: text/html;

charset=”us-ascii”

Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional/
/EN”>
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D”text/html;

charset=3Dus-asci=i”>

<META content=3D”MSHTML 6.00.2800.1106" name=3DGENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY>
<DIV>
Hi!

You don’t have to<STRIKE> </STRIKE>reply,
this is a</SPA=
N> test.
I hav<U>e</U> a new site: somewhereo=
nweb.com

You are wefldvlcome!

Another piece of text.

</DIV></BODY></HTML>

---=_NextPart_A11_623_DEA9B.72FB7-

Send-Safe has inserted the following pairs of tags: /
 around the ‘n’ in ‘don’t’, <STRIKE>/</STRIKE>
around a space, / around ‘s is a’ in ‘this is
a test’, <U>/</U> around the ‘e’ in ‘have’, /
 around ‘new’, a random font color around the
letters ‘eo’ in ‘somewhereonweb.com’ and a /
 around ‘u are’ in ‘you are’. All those tags were
added by the Randomize body HTML function.

The ‘Hide words from badwords.txt’ function has split the
word ‘welcome’ by inserting
fldv between ‘we’ and ‘lcome’.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION
Send-Safe has quite extensive functionality for obfuscating
the content of an email message, and it even has
SpamAssassin built in so that the user can test whether the
content of their message is a red-flag for SpamAssassin.

Older spam filters, and especially those that depend on
recognizing keywords, will be fooled by the trickery
available and spam filters that rely on checksumming
messages will have a hard time if the {%RND%} and
{%ROT%} macros are used carefully. However, up to date
spam filters should easily be able to deal with these tricks. It
is easy to spot and remove the useless HTML tags, and the
word ‘welcome’ can easily be reconstructed by spotting the
fldv that was
inserted and ignoring the letters ‘fldv’.

JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005S4S4S4S4S4

SPAM BULLETIN www.virusbtn.com

SPSPSPSPSPAMMERS REVEALEDAMMERS REVEALEDAMMERS REVEALEDAMMERS REVEALEDAMMERS REVEALED
Matt Ham

Title: Spam Kings,
Author: Brian McWilliams
Publisher: O’Reilly
ISBN: 0-596-00732-9

Spam Kings is described as
‘The real story behind the
high-rolling hucksters’ – a grand
claim indeed.

A large part of the book is
devoted to the mini-biographies
of two individuals in the
spam/anti-spam arena, with a
series of asides as notable
characters are encountered by or
contribute to the activities of the central two. The research
that has been undertaken for the book is solid, with
references available in many cases, and it is clear that
McWilliams sought out and interviewed the main characters
he describes.

The two central characters are Davis Hawke, spammer, and
Susan Gunn, aka Shiksaa, ‘anti-spammer’.

Davis Hawke must be every writer’s dream character – not
only does he have an extensive career as a spammer, but his
personal views range from neo-Nazi to survivalist
libertarian. At the start of the book Hawke comes across as
an entirely unsympathetic character, yet by the end of the
book – in my opinion at least – he seems more intriguing
than villainous.

Having been on the receiving end of numerous of Hawke’s
penis-related spams, my change in attitude is certainly not
due to a diminished sense of his ability to irritate vast
swathes of Internet users. Hawke does, however, seem to
have distanced himself from the net politics which dominate
the tales of supporting characters in Spam Kings – among
whom irritating personal traits seem to be the norm. Other
spammers described in the book seem to be a mix of
individuals ranging from the clinically insane to the career
criminal, with the majority simply being those who see an
opportunity for easy money.

In contrast, the other main character, Susan Gunn, seems a
far more sympathetic character at the start of the book –
reacting to being spammed by seeking out information
about the perpetrators. However, a sizeable proportion of
her activity as described in Spam Kings appears to be
name-calling. Logs of personal exchanges between both
spammers and anti-spammers play a prominent part in the
book and, as is common in such exchanges on the Internet

in general, these descend into pure childishness on
numerous occasions. As a result, few of the participants are
shown in an entirely positive light.

Direct action undertaken by anti-spammers is often
dominated by what can be considered acts of a vigilante
nature. DDoS attacks, the defacing of spammers’ sites
and publishing of personal information all seem to be
considered fair game by the anti-spammers described in the
book. Personal opinions may vary, but I believe that such
behaviour simply lowers the anti-spammers to the same
level as the spammers themselves. I had intended to be more
positive about the ethos of anti-spamming activists, but the
recent DDoS stunt performed by Lycos – in which users
were invited to download a screensaver program which
sent HTTP requests to spammers’ sites – made this an
impossible concession. It is unfortunate that the irresponsible
actions of a few activists have often overshadowed the good
work of the many sane anti-spammers.

Returning to the book: as a summary of the dramatis
personae, few of the protagonists look good at all times.
The plot of the book unfolds around the two central
characters and their associates, and contains some notable
clashes.

It was very interesting to learn about the various response
rates to different spam messages, along with the views of
spammers as to whether these response rates could be
considered good, bad or indifferent. Many of the spams
and products mentioned in the book seem almost like old
friends – who could forget the mound of emails exhorting
the reader to buy playing cards emblazoned with
‘most-wanted’ Iraqis as issued during the US invasion of
Iraq? Being able to link these spams to a particular
individual added greatly to my interest in the book.

From the outset I was drawn to the subject matter of the
book – and Spam Kings is certainly relevant to any person
who has been spammed. However, the language and concepts
do not assume a high level of technical knowledge and the
technical discussions avoid going into depth – which might
disappoint those who are after a more technically detailed
description of spammers’ activities.

The reported exchanges between spammers and
anti-spammers are rife with expletives – and, of course,
there are numerous mentions of male genitalia, which
might be a concern for some readers. That said, the ideal
audience for this book would be net-obsessed folk – for
whom reading the book would be a perfect way to spend a
lazy afternoon.

Those expecting technical depth or a reference tome may be
disappointed, but those who simply crave entertainment and
an insight into the world of some of those on the other end
of the spam in their inbox will enjoy Spam Kings.

BOOK REVIEW

