
VIRUS BULLETIN www.virusbtn.com

1313131313OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004

HASH WOESHASH WOESHASH WOESHASH WOESHASH WOES
Morton Swimmer and Jonathan A. Poritz
IBM Research GmbH

In a rump session of the August 2004 Crypto conference,
where attendees have the chance to give informal
(non-refereed) presentations of works in progress, a group
of Chinese researchers demonstrated flaws in a whole set of
hash functions and the entire crypto community was abuzz.
In this article, we will clarify the situation and draw lessons
from this incident.

First, we need a little background.

THE NAUGHTY BITSTHE NAUGHTY BITSTHE NAUGHTY BITSTHE NAUGHTY BITSTHE NAUGHTY BITS

A hash function h is an algorithm which maps a message
(bit string) x of arbitrary length to a digest h(x) of a fixed
length – a property we call compression. For reasons of
practicality, the digest h(x) must be easy to compute for
any message x.

One example is the common CRC-32 function. In
non-malicious environments, this compression alone can
be useful – for example to detect transmission errors on a
noisy channel – but in security applications we often use
the hash digest as part of an authentication or other
cryptographic protocol.

A trivial (but very widespread) kind of authentication using
hash functions is the practice, within the open source
community, of multiply-posting ‘md5 checksums’ of
software releases, so that a prospective downloader can
compare the checksum (actually the hash digest) of the
binary which they actually download to the value they have
found on various public websites. (Hence a hacker who
wishes to Trojanize a software package would have to get
his version onto the public servers and also get the
corresponding hashes to all sites which post these
authentication hash values.)

More sophisticated uses of hash functions include various
(standardized) digital signature schemes, as well as a
cute technique to make what are called ‘non-interactive
zero-knowledge proofs of knowledge’, which are
essentially certificates which prove that the issuer has
certain knowledge, without revealing all of the details of
that knowledge.

CRITERIACRITERIACRITERIACRITERIACRITERIA

For such security applications, one needs more robust hash
functions which have additional properties. We will describe

the three most common criteria from [1]. (There are other,
more elaborate, criteria we could have used, but such
precision is not needed for this discussion.)

For an unkeyed cryptographic hash function h, we generally
require one (or all) of the following characteristics:

PRE: Pre-image resistance means that, for essentially
all given digests y, it is computationally
infeasible to find any input x which hashes to
that value (so y=h(x)). This means we cannot
find an inverse function to h that is
computationally feasible.

2PRE: Second-pre-image resistance means that it is
computationally infeasible to find a second
input x´ ≠ x which has the same output
h(x) = h (x´), given that we know x (and
therefore the output h(x)).

COLL: Collision resistance means that it is
computationally infeasible to find distinct
inputs x ≠ x´ that hash to the same outputs,
i.e. h(x) = h (x´).

Typically, we assume ‘computationally infeasible’ to mean
no better than the brute-force approach, although in formal
cryptography this relates to the idea of ‘polynomial-time’
algorithms (or, rather, algorithms which are not
polynomial-time).

A candidate hash function h which fails to satisfy PRE
or 2PRE is not likely to be useful in security applications:
for example, both such failures allow an obvious
denial-of-service attack on the simple authentication
mentioned above, while failure of PRE usually allows
digital signatures using h to be completely forged.

COLL is rather more subtle. If, for example, we have found
colliding inputs x and x´, and we can get an automated
signer to sign h(x), then we can later present the forged x´
instead as the signed message; of course, this results merely
in a denial-of-service attack (again), unless we have fine
control over the collision production.

In fact, there will always be collisions, due to the
compression factor of the hash function. What we require
of a secure hash is not that there are no collisions, but that
it is not possible to generate many collisions with a
reasonable amount of computational power.

HISTORHISTORHISTORHISTORHISTORYYYYY

Modern cryptographic hash history starts with Ron L.
Rivest’s creation of the MD4 hash algorithm in 1990, which
was meant to be an improvement on the slow MD2
algorithm. However, very soon it was suspected that MD4

TECHNICAL FEATURE

VIRUS BULLETIN www.virusbtn.com

1414141414 OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004

was not secure enough and in 1992, Rivest supplanted it
with MD5, which contained an extra round in the three
rounds of the MD4 compression function and changed the
functions in some of the rounds. This and other
modifications were meant to make the algorithm less
symmetric and therefore more secure.

Soon after, MD5 was extended to become HAVAL.
Likewise RIPEMD, which appeared a few years later,
was also based on MD4.

MD4 BROKENMD4 BROKENMD4 BROKENMD4 BROKENMD4 BROKEN
Apparently, the suspicions surrounding MD4 were well
founded. In 1992, collisions in some parts of the MD4
algorithm were found and by 1995, Hans Dobbertin had
found a method of producing meaningful collisions in
just a few seconds using the computers of the day [2]. By
1998, Dobbertin had found a way of inverting a reduced
strength version of MD4. This means that MD4 completely
fails COLL, and its status for PRE and 2PRE is considered
essentially broken.

Meanwhile, MD5 was under attack as well. After some
successful attacks against the compression function in
MD5, Dobbertin extended his MD4 attack to MD5 and
was able to produce collisions by modifying the algorithm
very slightly.

RIPEMD was also attacked by Dobbertin and collisions
were found in a reduced round version of it. In response,
the algorithm was modified and RIPEMD-128 (128 bits)
and RIPEMD-160 (160 bits) emerged – these are included
in the ISO/IEC DIS 10118-3 standard, which was finalized
this year.

Meanwhile, in 1993, NIST (National Institute for Standards
and Technology) published the Secure Hash Algorithm
(SHA, now usually referred to as SHA-0), which was meant
to be used with NIST’s signature algorithm DSA. Like so
many others, it too is based on the now thoroughly broken
MD4, so it was little surprise when, in 1995, a modification
appeared: SHA-1.

Not only did SHA-1 produce a 160-bit hash code (over
the 128 bits of MD4 and MD5), but it included a unique
expansion function before the compression, which is
attributed with providing greater security. SHA-1, and its
sisters, SHA-256, SHA-512 and SHA-384 are now also
included in the ISO/IEC DOS 10118-3 standard and are the
only hash algorithms allowed by NIST’s FIPS 180-2 standard.

THE DOWNFTHE DOWNFTHE DOWNFTHE DOWNFTHE DOWNFALL OF MD5ALL OF MD5ALL OF MD5ALL OF MD5ALL OF MD5

After Dobbertin’s success with breaking MD4, the focus
shifted to breaking MD5 security. A website intending to

organize a distributed computer attacking MD5 (as was
used in the RSA challenge) was created at
http://www.md5crk.com/.

While that effort was focused on a brute-force search for
collisions, the more interesting problem of finding a less
computationally exhausting attack on the complete
algorithm remained elusive. That is, until the presentation
given at this year’s Crypto conference by Xiaoyun Wang,
Dengguo Feng, Xuejia Lai and Honbo Yu [3], all of Chinese
research institutes or universities.

Using a multi-processor IBM pSeries machine, Wang et al.
claim to be able to calculate a collision in just over an hour.
For the HAVAL-128 extension to MD5, they were able to
calculate collisions in 26 calculations, as opposed to the
brute-force approach requiring 264. In fact, they claimed
that, with their method, collisions can be found by hand
calculation for MD4.

Next, they showed two collisions in the original RIPEMD
algorithm and finally they mentioned that collisions could
be found in the original SHA-0 algorithm in 240 calculations,
as well as in the HAVAL-160.

Unfortunately, their presentation (and a paper on the e-print
archive site of the International Association for Cryptologic
Research [3]) did not provide very much detail about their
method. However, they made a convincing argument and
it is likely that Wang et al. will publish a more detailed
paper in the near future so that the crypto community can
evaluate it.

Although eclipsed somewhat by the Wang, et al.
presentation, Antoine Joux (whose ideas the Chinese team
used in their work) announced in the same session of the
conference the existence of a collision in the original
SHA-0 algorithm, effectively lending weight to Wang,
et al.’s similar statement.

Also in the same session, Israeli cryptographer Eli Biham
announced results on the COLL attacks against SHA-1
that he has been waging. So far, collisions have been
obtainable in a reduced round version of SHA-1 (40 instead
of 80 rounds).

DO WE CARE?DO WE CARE?DO WE CARE?DO WE CARE?DO WE CARE?
For simple applications of hashes, PRE and 2PRE security
is probably sufficient. But before you breathe a sigh of
relief, consider this: it is believed that evidence of COLL
attacks implies that 2PRE and possibly PRE attacks are also
likely to be imminent. This seems to be borne out by our
experience with MD4, where first partial, then full COLL
attacks preceded useful COLL and then partial PRE attacks.
If MD4 were still of interest, there might be a successful
PRE attack by now.

VIRUS BULLETIN www.virusbtn.com

1515151515OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004OCTOBER 2004

But since COLL attacks do not automatically imply PRE
and 2PRE attacks, we may be OK for simple uses of hashes.
Using MD5 hashes for file integrity or document signing
applications will still provide a good level of security until
useful collisions can be found.

Applications like SSL may also be secure enough because,
while an attacker might try to have a certificate authority
sign one version of a certificate and then use its collision
later to forge the site’s certificate, in practice, signing
authorities provide part of the data that then gets signed,
which greatly limits the usefulness of a COLL attack in
this instance.

However, more complicated cryptographic protocols may
rely specifically on a hash function being collision-free.
This is apparently the case with ISO/IEC 18033-2 [4],
which is still in draft status. These applications will have to
look for more secure hash functions.

CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS
MD5 is now considered broken. We can expect folks to be
moving away from it in the near future, as the opportunity
arises. The same goes for SHA-0, RIPEMD and
HAVAL-128.

SHA-1 is now also in doubt, as the crypto community
generally believes that COLL attacks are quite possible in
the near future, and so also may follow 2PRE and PRE
attacks. Thus it seems prudent to replace SHA-1 with
SHA-256 or better in security-critical standards, in
software, and even in actual digital data which must remain
secure for some time.

Furthermore, SHA-1 is hardwired in a whole host of
internationally-recognized standards (such as NIST’s
official digital signature scheme, most of the work of the
Trusted Computing Group, etc.), and implementations of
all such standards must be considered somewhat suspect
unless and until each one is examined by experts and
concluded even to be safe with a possibly COLL-failing
hash function.

Because all of the hash functions we have discussed are
based on MD4, it is tempting to lay the blame for this mess
on this single fact. However, it is important to note that it
has not been proven that COLL-resistant hash functions are
possible at all. Also, the entire field of hash functions is at
best a black art and is based on the best judgement of a few
very talented individuals.

LESSONSLESSONSLESSONSLESSONSLESSONS

Even a perfect hash function only ever has ‘as much
security as’ half as many bits as its digest size (this notion

can be made precise in cryptography). So, in fact, we were
already at risk before this recent discovery of flaws in MD5
and SHA-1, every time we used such a hash in a protocol
with a keyed cryptographic primitive whose key size was
more than half the digest size – at risk in the sense that we
were getting less security than we thought.

Thus one lesson the current situation should teach us is to
be careful about which hash function we use, even simply
in terms of its digest size.

We should also take from this incident the fact that we
must keep implementations that rely on hash functions
flexible. There must be a simple way to replace broken
hash function code (or simply increase the size of the
digest, when necessary, for a certain number of bits of
security, as just noted).

Furthermore – and just as important – there must be a clear
migration path to the new hash function. Not only must the
hash function be modularized, but the storage available for
the hash code must be expandable. It may also be necessary
to keep the old, defunct hash codes around and space needs
to be allocated for that, too.

Standards bodies should make their designs modular in a
similar fashion, so that any future advances in the
cryptanalysis of hash functions do not invalidate the entire
design, but merely require more powerful hashes to be
plugged in.

Given the pervasiveness of MD5 usage, it will be interesting
to see how long it takes until we have completely migrated
away from MD5. There are still some programs in use today
that employ MD2!

BIBLIOGRAPHYBIBLIOGRAPHYBIBLIOGRAPHYBIBLIOGRAPHYBIBLIOGRAPHY

[1] Menezes, Alfred; van Oorschot, Paul C.; Vanstone,
Scott A., Handbook of Applied Cryptography, 1997,
CRC Press.

[2] Hans Dobbertin, ‘The Status of MD5 After a
Recent Attack’, CryptoBytes vol. 2, no. 2, 1996,
ftp://ftp.rsasecurity.com/pub/cryptobytes/
crypto2n2.pdf.

[3] Xiaoyun Wang; Dengguo Feng; Xuejia Lai; Honbo
Yu, ‘Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD’, International
Association for Cryptologic Research, 2004,
http://eprint.iacr.org/2004/199/.

[4] Working Group 2 of ISO/IEC JTC 1/SC27, ‘ISO
18033-2: An Emerging Standard for Public-Key
Encryption’, 2004, available from
http://www.shoup.net/iso/.

